算法基础--排序

ps:以前没有做过ACM,在算法这一块吃了很大的亏,尤其是在今年的春招中所以痛定思痛,好好恶补一下算法的知识。

今天写算法的基础,排序算法。

冒泡排序:每次把最大的数移到最后一个

public static void bubbleSort(int[] arr) {
		if (arr == null || arr.length < 2) {
			return;
		}
		for (int e = arr.length - 1; e > 0; e--) {
			for (int i = 0; i < e; i++) {
				if (arr[i] > arr[i + 1]) {
					swap(arr, i, e);
				}
			}
		}
	}

	public static void swap(int[] arr, int i, int j) {
		arr[i] = arr[i] ^ arr[j];
		arr[j] = arr[i] ^ arr[j];
		arr[i] = arr[i] ^ arr[j];
	}

插入排序,将新进入的数插入已经有序的数组里

public static void insertionSort(int[] arr) {
		if (arr == null || arr.length < 2) {
			return;
		}
		for (int i = 1; i < arr.length; i++) {
			for (int j = i - 1; j >= 0 && arr[j] > arr[j + 1]; j--) {
				swap(arr, j, j + 1);
			}
		}
	}

	public static void swap(int[] arr, int i, int j) {
		arr[i] = arr[i] ^ arr[j];
		arr[j] = arr[i] ^ arr[j];
		arr[i] = arr[i] ^ arr[j];
	}

选择排序,将最小的数选出来,放在应该放置的位置

public static void selectionSort(int[] arr) {
		if (arr == null || arr.length < 2) {
			return;
		}
		for (int i = 0; i < arr.length - 1; i++) {
			int minIndex = i;
			for (int j = i + 1; j < arr.length; j++) {
				minIndex = arr[j] < arr[minIndex] ? j : minIndex;
			}
			swap(arr, i, minIndex);
		}
	}

	public static void swap(int[] arr, int i, int j) {
		int tmp = arr[i];
		arr[i] = arr[j];
		arr[j] = tmp;
	}

堆排序,借助堆的特性

public static void heapSort(int[] arr) {
		if (arr == null || arr.length < 2) {
			return;
		}
		for (int i = 0; i < arr.length; i++) {
			heapInsert(arr, i);
		}
		int size = arr.length;
		swap(arr, 0, --size);
		while (size > 0) {
			heapify(arr, 0, size);
			swap(arr, 0, --size);
		}
	}

	// 向堆中插入一个元素
	public static void heapInsert(int[] arr, int index) {
		while (arr[index] > arr[(index - 1) / 2]) {
			swap(arr, index, (index - 1) / 2);
			index = (index - 1) / 2;
		}
	}

	// 调整堆
	public static void heapify(int[] arr, int index, int size) {
		int left = index * 2 + 1;
		while (left < size) {
			int largest = left + 1 < size && arr[left + 1] > arr[left] ? left + 1 : left;
			largest = arr[largest] > arr[index] ? largest : index;
			if (largest == index) {
				break;
			}
			swap(arr, largest, index);
			index = largest;
			left = index * 2 + 1;
		}
	}

	public static void swap(int[] arr, int i, int j) {
		int tmp = arr[i];
		arr[i] = arr[j];
		arr[j] = tmp;
	}

桶排序

1,非基于比较的排序,与被排序的样本的实际数据状况很有关系,所 以实际中并不经常使用
2,时间复杂度O(N),额外空间复杂度O(N)
3,稳定的排序

// only for 0~200 value
	public static void bucketSort(int[] arr) {
		if (arr == null || arr.length < 2) {
			return;
		}
		int max = Integer.MIN_VALUE;
		for (int i = 0; i < arr.length; i++) {
			max = Math.max(max, arr[i]);
		}
		int[] bucket = new int[max + 1];
		for (int i = 0; i < arr.length; i++) {
			bucket[arr[i]]++;
		}
		int i = 0;
		for (int j = 0; j < bucket.length; j++) {
			while (bucket[j]-- > 0) {
				arr[i++] = j;
			}
		}
	}

 基数排序

// only for no-negative value
	public static void radixSort(int[] arr) {
		if (arr == null || arr.length < 2) {
			return;
		}
		radixSort(arr, 0, arr.length - 1, maxbits(arr));
	}

	public static int maxbits(int[] arr) {
		int max = Integer.MIN_VALUE;
		for (int i = 0; i < arr.length; i++) {
			max = Math.max(max, arr[i]);
		}
		int res = 0;
		while (max != 0) {
			res++;
			max /= 10;
		}
		return res;
	}

	public static void radixSort(int[] arr, int begin, int end, int digit) {
		final int radix = 10;
		int i = 0, j = 0;
		int[] count = new int[radix];
		int[] bucket = new int[end - begin + 1];
		for (int d = 1; d <= digit; d++) {
			for (i = 0; i < radix; i++) {
				count[i] = 0;
			}
			for (i = begin; i <= end; i++) {
				j = getDigit(arr[i], d);
				count[j]++;
			}
			for (i = 1; i < radix; i++) {
				count[i] = count[i] + count[i - 1];
			}
			for (i = end; i >= begin; i--) {
				j = getDigit(arr[i], d);
				bucket[count[j] - 1] = arr[i];
				count[j]--;
			}
			for (i = begin, j = 0; i <= end; i++, j++) {
				arr[i] = bucket[j];
			}
		}
	}

	public static int getDigit(int x, int d) {
		return ((x / ((int) Math.pow(10, d - 1))) % 10);
	}

归并排序:分治的过程

public static void mergeSort(int[] arr) {
		if (arr == null || arr.length < 2) {
			return;
		}
		mergeSort(arr, 0, arr.length - 1);
	}

	public static void mergeSort(int[] arr, int l, int r) {
		if (l == r) {
			return;
		}
		int mid = l + ((r - l) >> 1);
		mergeSort(arr, l, mid);
		mergeSort(arr, mid + 1, r);
		merge(arr, l, mid, r);
	}

	public static void merge(int[] arr, int l, int m, int r) {
		int[] help = new int[r - l + 1];
		int i = 0;
		int p1 = l;
		int p2 = m + 1;
		while (p1 <= m && p2 <= r) {
			help[i++] = arr[p1] < arr[p2] ? arr[p1++] : arr[p2++];
		}
		while (p1 <= m) {
			help[i++] = arr[p1++];
		}
		while (p2 <= r) {
			help[i++] = arr[p2++];
		}
		for (i = 0; i < help.length; i++) {
			arr[l + i] = help[i];
		}
	}

快速排序,无法做到稳定性

public static void quickSort(int[] arr) {
		if (arr == null || arr.length < 2) {
			return;
		}
		quickSort(arr, 0, arr.length - 1);
	}

	public static void quickSort(int[] arr, int l, int r) {
		if (l < r) {
			swap(arr, l + (int) (Math.random() * (r - l + 1)), r);
			int[] p = partition(arr, l, r);
			quickSort(arr, l, p[0] - 1);
			quickSort(arr, p[1] + 1, r);
		}
	}

	public static int[] partition(int[] arr, int l, int r) {
		int less = l - 1;
		int more = r;
		while (l < more) {
			if (arr[l] < arr[r]) {
				swap(arr, ++less, l++);
			} else if (arr[l] > arr[r]) {
				swap(arr, --more, l);
			} else {
				l++;
			}
		}
		swap(arr, more, r);
		return new int[] { less + 1, more };
	}

	public static void swap(int[] arr, int i, int j) {
		int tmp = arr[i];
		arr[i] = arr[j];
		arr[j] = tmp;
	}

 

你可能感兴趣的:(算法)