机器人运动规划

动态窗口方法 (Dynamic Window Approach)

( v , ω ) (v, \omega) (v,ω)空间下,确定

  • 静态窗口(最大/最小速度&角速度)
  • 动态窗口(由当前速度+最大加速度&角加速度所能达到的速度)
  • 无碰撞范围

在此范围内确定最优方案,评价指标包括

  • 当前朝向与目标方向的偏差
  • 与目标点的距离
  • 速度(在终点刹车范围外越快越好)

缺点

  • 目标函数局部最优
  • 假设障碍物静止

改进一:运动障碍物 Velocity Obstacles

机器人运动规划_第1张图片

改进二:协作避障Reciprocal Velocity Obstacles

  • 坐标系为两个机器人之间的相对速度和角速度
  • 如当前速度和角速度在障碍区域内,作当前点到障碍区域切线的垂线,两个机器人沿着垂线方向各走至少一半。

图搜索

Open Set: Unexpanded Nodes
Closed: 已访问的,不再更新
机器人运动规划_第2张图片

广度优先

  • Complete (will find the solution if it exists)
  • First solution found is the optimal path

深度优先

  • Lower memory footprint than BFS with high-branching
  • DFS not complete for infinite trees

Dijkstra’s Algorithm

  • Open queue is ordered according to currently known best cost to arrive
    机器人运动规划_第3张图片

A* Heuristic Search

The cost function is a sum of two functions:

  • Past path-cost function, which is a known cost from the starting node to the current node
  • Future path-cost function, which is a “heuristic estimate” of the distance from the current node to the goal

SAMPLING-BASED MOTION PLANNING

  • Sampling algorithm
  • distance function
  • collision detection approach

Probabilistic Road Maps

  • Step 1: Build a roadmap by connecting nearby (sampled, free-space) configurations using simple planners to construct a graph of valid path segments
  • Step 2: Query: Search the graph using a graph search technique (A*)
  • 适用于multiple-queries

Rapidly Exploring Dense Trees

  • 适用于single-query
  • 节点之间具有方向性
  • 易于与机器人的运动限制相结合
    机器人运动规划_第4张图片

你可能感兴趣的:(机器人运动规划)