SDRAM初始化代码说明:
sdr.v : SDRAM模型
sdram_init.v 初始化SDRAM控制器
sdram_init_tb.v 初始化测试文件
仿真时令:
iverilog -o wave_sdram_init sdr.v sdram_init.v sdram_init_tb.v
vvp wave_sdram_init
gtkwave sdram_init_tb.vcd
SDRAM控制器代码说明:
sdram_control.v :SDRAM控制器
sdram_control_tb.v :SDRAM控制器测试代码
sdr.v : SDRAM模型
sdram_init.v 初始化SDRAM控制器
仿真时令:
iverilog -o wave_sdram_control sdr.v sdram_control_tb.v sdram_control.v sdram_init.v
vvp wave_sdram_control
gtkwave sdram_control_tb.vcd
/****************************************************************************************
*
* Disclaimer This software code and all associated documentation, comments or other
* of Warranty: information (collectively "Software") is provided "AS IS" without
* warranty of any kind. MICRON TECHNOLOGY, INC. ("MTI") EXPRESSLY
* DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
* TO, NONINFRINGEMENT OF THIRD PARTY RIGHTS, AND ANY IMPLIED WARRANTIES
* OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. MTI DOES NOT
* WARRANT THAT THE SOFTWARE WILL MEET YOUR REQUIREMENTS, OR THAT THE
* OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE.
* FURTHERMORE, MTI DOES NOT MAKE ANY REPRESENTATIONS REGARDING THE USE OR
* THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS OF ITS CORRECTNESS,
* ACCURACY, RELIABILITY, OR OTHERWISE. THE ENTIRE RISK ARISING OUT OF USE
* OR PERFORMANCE OF THE SOFTWARE REMAINS WITH YOU. IN NO EVENT SHALL MTI,
* ITS AFFILIATED COMPANIES OR THEIR SUPPLIERS BE LIABLE FOR ANY DIRECT,
* INDIRECT, CONSEQUENTIAL, INCIDENTAL, OR SPECIAL DAMAGES (INCLUDING,
* WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION,
* OR LOSS OF INFORMATION) ARISING OUT OF YOUR USE OF OR INABILITY TO USE
* THE SOFTWARE, EVEN IF MTI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGES. Because some jurisdictions prohibit the exclusion or
* limitation of liability for consequential or incidental damages, the
* above limitation may not apply to you.
*
* Copyright 2005 Micron Technology, Inc. All rights reserved.
*
* bhoffman - 07/18/06
*
****************************************************************************************/
// Timing parameters based on Speed Grade and part type (Y37M)
`define sg6a
`define den256Mb
`define x16 // SYMBOL UNITS DESCRIPTION
// ------ ----- -----------
`ifdef sg6a // Timing Parameters for -6A (CL = 3)
parameter tCK = 6.0; // tCK ns Nominal Clock Cycle Time
parameter tCK3_min = 6.0; // tCK ns Nominal Clock Cycle Time
parameter tCK2_min = 10.0; // tCK ns Nominal Clock Cycle Time
parameter tCK1_min = 20.0; // tCK ns Nominal Clock Cycle Time
parameter tAC3 = 5.4; // tAC3 ns Access time from CLK (pos edge) CL = 3
parameter tAC2 = 7.5; // tAC2 ns Access time from CLK (pos edge) CL = 2
parameter tAC1 = 17.0; // tAC1 ns Parameter definition for compilation - CL = 1 illegal for sg75
parameter tHZ3 = 5.4; // tHZ3 ns Data Out High Z time - CL = 3
parameter tHZ2 = 7.5; // tHZ2 ns Data Out High Z time - CL = 2
parameter tHZ1 = 17.0; // tHZ1 ns Parameter definition for compilation - CL = 1 illegal for sg75
parameter tOH = 3.0; // tOH ns Data Out Hold time
parameter tMRD = 2.0; // tMRD tCK Load Mode Register command cycle time (2 * tCK)
parameter tRAS = 42.0; // tRAS ns Active to Precharge command time
parameter tRC = 60.0; // tRC ns Active to Active/Auto Refresh command time
parameter tRFC = 60.0; // tRFC ns Refresh to Refresh Command interval time
parameter tRCD = 18.0; // tRCD ns Active to Read/Write command time
parameter tRP = 18.0; // tRP ns Precharge command period
parameter tRRD = 2.0; // tRRD tCK Active bank a to Active bank b command time (2 * tCK)
parameter tWRa = 6.0; // tWR ns Write recovery time (auto-precharge mode - must add 1 CLK)
parameter tWRm = 12.0; // tWR ns Write recovery time
`elsif sg7e // Timing Parameters for -7E (CL = 3)
parameter tCK = 7.0; // tCK ns Nominal Clock Cycle Time
parameter tCK3_min = 7.0; // tCK ns Nominal Clock Cycle Time
parameter tCK2_min = 7.5; // tCK ns Nominal Clock Cycle Time
parameter tCK1_min = 0.0; // tCK ns Nominal Clock Cycle Time
parameter tAC3 = 5.4; // tAC3 ns Access time from CLK (pos edge) CL = 3
parameter tAC2 = 5.4; // tAC2 ns Access time from CLK (pos edge) CL = 2
parameter tAC1 = 0.0; // tAC1 ns Parameter definition for compilation - CL = 1 illegal for sg75
parameter tHZ3 = 5.4; // tHZ3 ns Data Out High Z time - CL = 3
parameter tHZ2 = 5.4; // tHZ2 ns Data Out High Z time - CL = 2
parameter tHZ1 = 0.0; // tHZ1 ns Parameter definition for compilation - CL = 1 illegal for sg75
parameter tOH = 2.7; // tOH ns Data Out Hold time
parameter tMRD = 2.0; // tMRD tCK Load Mode Register command cycle time (2 * tCK)
parameter tRAS = 37.0; // tRAS ns Active to Precharge command time
parameter tRC = 60.0; // tRC ns Active to Active/Auto Refresh command time
parameter tRFC = 66.0; // tRFC ns Refresh to Refresh Command interval time
parameter tRCD = 15.0; // tRCD ns Active to Read/Write command time
parameter tRP = 15.0; // tRP ns Precharge command period
parameter tRRD = 2.0; // tRRD tCK Active bank a to Active bank b command time (2 * tCK)
parameter tWRa = 7.0; // tWR ns Write recovery time (auto-precharge mode - must add 1 CLK)
parameter tWRm = 14.0; // tWR ns Write recovery time
`else `define sg75 // Timing Parameters for -75 (CL = 3)
parameter tCK = 7.5; // tCK ns Nominal Clock Cycle Time
parameter tCK3_min = 7.5; // tCK ns Nominal Clock Cycle Time
parameter tCK2_min = 10.0; // tCK ns Nominal Clock Cycle Time
parameter tCK1_min = 0.0; // tCK ns Nominal Clock Cycle Time
parameter tAC3 = 5.4; // tAC3 ns Access time from CLK (pos edge) CL = 3
parameter tAC2 = 6.0; // tAC2 ns Access time from CLK (pos edge) CL = 2
parameter tAC1 = 0.0; // tAC1 ns Parameter definition for compilation - CL = 1 illegal for sg75
parameter tHZ3 = 5.4; // tHZ3 ns Data Out High Z time - CL = 3
parameter tHZ2 = 6.0; // tHZ2 ns Data Out High Z time - CL = 2
parameter tHZ1 = 0.0; // tHZ1 ns Parameter definition for compilation - CL = 1 illegal for sg75
parameter tOH = 2.7; // tOH ns Data Out Hold time
parameter tMRD = 2.0; // tMRD tCK Load Mode Register command cycle time (2 * tCK)
parameter tRAS = 44.0; // tRAS ns Active to Precharge command time
parameter tRC = 66.0; // tRC ns Active to Active/Auto Refresh command time
parameter tRFC = 66.0; // tRFC ns Refresh to Refresh Command interval time
parameter tRCD = 20.0; // tRCD ns Active to Read/Write command time
parameter tRP = 20.0; // tRP ns Precharge command period
parameter tRRD = 2.0; // tRRD tCK Active bank a to Active bank b command time (2 * tCK)
parameter tWRa = 7.5; // tWR ns Write recovery time (auto-precharge mode - must add 1 CLK)
parameter tWRm = 15.0; // tWR ns Write recovery time
`endif
// Size Parameters based on Part Width
`ifdef den64Mb
`ifdef x4
parameter ADDR_BITS = 12; // Set this parameter to control how many Address bits are used
parameter ROW_BITS = 12; // Set this parameter to control how many Row bits are used
parameter COL_BITS = 10; // Set this parameter to control how many Column bits are used
parameter DQ_BITS = 4; // Set this parameter to control how many Data bits are used
parameter DM_BITS = 1; // Set this parameter to control how many DM bits are used
parameter BA_BITS = 2; // Bank bits
`elsif x8
parameter ADDR_BITS = 12; // Set this parameter to control how many Address bits are used
parameter ROW_BITS = 12; // Set this parameter to control how many Row bits are used
parameter COL_BITS = 9; // Set this parameter to control how many Column bits are used
parameter DQ_BITS = 8; // Set this parameter to control how many Data bits are used
parameter DM_BITS = 1; // Set this parameter to control how many DM bits are used
parameter BA_BITS = 2; // Bank bits
`else `define x16
parameter ADDR_BITS = 12; // Set this parameter to control how many Address bits are used
parameter ROW_BITS = 12; // Set this parameter to control how many Row bits are used
parameter COL_BITS = 8; // Set this parameter to control how many Column bits are used
parameter DQ_BITS = 16; // Set this parameter to control how many Data bits are used
parameter DM_BITS = 2; // Set this parameter to control how many DM bits are used
parameter BA_BITS = 2; // Bank bits
`endif
`elsif den128Mb
`ifdef x4
parameter ADDR_BITS = 12; // Set this parameter to control how many Address bits are used
parameter ROW_BITS = 12; // Set this parameter to control how many Row bits are used
parameter COL_BITS = 11; // Set this parameter to control how many Column bits are used
parameter DQ_BITS = 4; // Set this parameter to control how many Data bits are used
parameter DM_BITS = 1; // Set this parameter to control how many DM bits are used
parameter BA_BITS = 2; // Bank bits
`elsif x8
parameter ADDR_BITS = 12; // Set this parameter to control how many Address bits are used
parameter ROW_BITS = 12; // Set this parameter to control how many Row bits are used
parameter COL_BITS = 10; // Set this parameter to control how many Column bits are used
parameter DQ_BITS = 8; // Set this parameter to control how many Data bits are used
parameter DM_BITS = 1; // Set this parameter to control how many DM bits are used
parameter BA_BITS = 2; // Bank bits
`else `define x16
parameter ADDR_BITS = 12; // Set this parameter to control how many Address bits are used
parameter ROW_BITS = 12; // Set this parameter to control how many Row bits are used
parameter COL_BITS = 9; // Set this parameter to control how many Column bits are used
parameter DQ_BITS = 16; // Set this parameter to control how many Data bits are used
parameter DM_BITS = 2; // Set this parameter to control how many DM bits are used
parameter BA_BITS = 2; // Bank bits
`endif
`elsif den256Mb
`ifdef x4
parameter ADDR_BITS = 13; // Set this parameter to control how many Address bits are used
parameter ROW_BITS = 13; // Set this parameter to control how many Row bits are used
parameter COL_BITS = 11; // Set this parameter to control how many Column bits are used
parameter DQ_BITS = 4; // Set this parameter to control how many Data bits are used
parameter DM_BITS = 1; // Set this parameter to control how many DM bits are used
parameter BA_BITS = 2; // Bank bits
`elsif x8
parameter ADDR_BITS = 13; // Set this parameter to control how many Address bits are used
parameter ROW_BITS = 13; // Set this parameter to control how many Row bits are used
parameter COL_BITS = 10; // Set this parameter to control how many Column bits are used
parameter DQ_BITS = 8; // Set this parameter to control how many Data bits are used
parameter DM_BITS = 1; // Set this parameter to control how many DM bits are used
parameter BA_BITS = 2; // Bank bits
`else `define x16
parameter ADDR_BITS = 13; // Set this parameter to control how many Address bits are used
parameter ROW_BITS = 13; // Set this parameter to control how many Row bits are used
parameter COL_BITS = 9; // Set this parameter to control how many Column bits are used
parameter DQ_BITS = 16; // Set this parameter to control how many Data bits are used
parameter DM_BITS = 2; // Set this parameter to control how many DM bits are used
parameter BA_BITS = 2; // Bank bits
`endif
`else `define den512Mb
`ifdef x4
parameter ADDR_BITS = 13; // Set this parameter to control how many Address bits are used
parameter ROW_BITS = 13; // Set this parameter to control how many Row bits are used
parameter COL_BITS = 12; // Set this parameter to control how many Column bits are used
parameter DQ_BITS = 4; // Set this parameter to control how many Data bits are used
parameter DM_BITS = 1; // Set this parameter to control how many DM bits are used
parameter BA_BITS = 2; // Bank bits
`elsif x8
parameter ADDR_BITS = 13; // Set this parameter to control how many Address bits are used
parameter ROW_BITS = 13; // Set this parameter to control how many Row bits are used
parameter COL_BITS = 11; // Set this parameter to control how many Column bits are used
parameter DQ_BITS = 8; // Set this parameter to control how many Data bits are used
parameter DM_BITS = 1; // Set this parameter to control how many DM bits are used
parameter BA_BITS = 2; // Bank bits
`else `define x16
parameter ADDR_BITS = 13; // Set this parameter to control how many Address bits are used
parameter ROW_BITS = 13; // Set this parameter to control how many Row bits are used
parameter COL_BITS = 10; // Set this parameter to control how many Column bits are used
parameter DQ_BITS = 16; // Set this parameter to control how many Data bits are used
parameter DM_BITS = 2; // Set this parameter to control how many DM bits are used
parameter BA_BITS = 2; // Bank bits
`endif
`endif
// Other Parameters
parameter mem_sizes = 2**(ROW_BITS+COL_BITS) - 1;
// 地址和数据位宽
`define ASIZE 13 //SDRAM地址位宽
`define DSIZE 16 //SDRAM数据位宽
`define BSIZE 2 //SDRAM的bank地址位宽
//操作命令{CS_N,RAS_N,CAS_N,WE}
parameter C_NOP = 4'b0111, //空操作命令
C_PRE = 4'b0010, //预充电命令
C_AREF = 4'b0001, //自动刷新命令
C_MSET = 4'b0000, //加载模式寄存器命令
C_ACT = 4'b0011, //激活命令
C_RD = 4'b0101, //读命令
C_WR = 4'b0100; //写命令
133 MHz ///
/*
parameter INIT_PRE = 26600; //初始化等待时间>100us,取200us
parameter REF_PRE = 3; //tRP >=18ns,取30ns
parameter REF_REF = 10; //tRFC >=60ns,取100ns
parameter AUTO_REF = 2000; //自动刷新周期<64ms/4096=15625ns
parameter LMR_ACT = 2; //装载模式寄存器到可激活延时(2个时钟周期)
parameter WR_PRE = 2; //WRITE recovery time 1CLK+6ns
parameter SC_CL = 2; //列选通潜伏期
parameter SC_RCD = 3; //18ns--ACTIVE to READ or WRITE delay
parameter SC_BL = 4; //Burst Length,1,2,4,8可选
*/
///
100 MHz ///
parameter INIT_PRE = 20000;//初始化等待时间>100us,取200us
parameter REF_PRE = 3; //tRP >=20ns,取30ns
parameter REF_REF = 10; //tRRC >=66ns,取100ns
parameter AUTO_REF = 1560; //自动刷新周期<64ms/4096=15625ns
parameter LMR_ACT = 2; //装载模式寄存器到可激活延时
parameter WR_PRE = 2; //写操作写数据完成到预充电时间间隔
parameter SC_RCD = 3; //激活到读命令或写命令延时tRCD>18ns
parameter SC_CL = 3; //列选通潜伏期
parameter SC_BL = 8; //突发长度设置,1,2,4,8可选
///
50 MHz ///
/*
parameter INIT_PRE = 10000; //初始化等待时间>100us,取200us
parameter REF_PRE = 1; //tRP >=18ns,取30ns
parameter REF_REF = 5; //tRFC >=60ns,取100ns
parameter AUTO_REF = 780; //自动刷新周期<64ms/4096=15625ns
parameter LMR_ACT = 2; //装载模式寄存器到可激活延时(2个时钟周期)LOAD MODE REGISTER command to ACTIVE or REFRESH command
parameter PRE_ACT = 1; //precharge 到可激活需要延时最小20ns
parameter WR_PRE = 2; //WRITE recovery time 1CLK+6ns
parameter SC_CL = 2; //列选通潜伏期
parameter SC_RCD = 3; //ACTIVE to READ or WRITE delay
parameter SC_BL = 4; //Burst Length,1,2,4,8可选
*/
///
// SDRAM模式寄存器参数化表示
//写突发模式设置
parameter OP_CODE = 1'b0;
//突发长度设置
parameter SDR_BL = (SC_BL == 1)? 3'b000:
(SC_BL == 2)? 3'b001:
(SC_BL == 4)? 3'b010:
(SC_BL == 8)? 3'b011:
3'b111;
//突发类型设置
parameter SDR_BT = 1'b0;
//列选通潜伏期设置
parameter SDR_CL = (SC_CL == 2)? 3'b10: 3'b11;
/**************************************************************************
*
* File Name: sdr.v
* Version: 2.2
* Date: October 12th, 2010
* Model: BUS Functional
* Simulator: Model Technology
*
* Dependencies: None
*
* Email: modelsupport@micron.com
* Company: Micron Technology, Inc.
*
* Description: Micron SDRAM Verilog model
*
* Limitation: - Doesn't check for refresh timing
*
* Note: - Set simulator resolution to "ps" accuracy
* - Set Debug = 0 to disable $display messages
*
* Disclaimer: THESE DESIGNS ARE PROVIDED "AS IS" WITH NO WARRANTY
* WHATSOEVER AND MICRON SPECIFICALLY DISCLAIMS ANY
* IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
* A PARTICULAR PURPOSE, OR AGAINST INFRINGEMENT.
*
* Copyright � 2001 Micron Semiconductor Products, Inc.
* All rights researved
*
* Rev Author Date Changes
* --- -------------------------- ---------------------------------------
* 2.3 SH 05/12/2016 - Update tAC, tHZ timing
* Micron Technology Inc.
*
* 2.2 SH 10/12/2010 - Combine all parts into sdr_parameters.vh
* Micron Technology Inc.
*
* 2.1 SH 06/06/2002 - Typo in bank multiplex
* Micron Technology Inc.
*
* 2.0 SH 04/30/2002 - Second release
* Micron Technology Inc.
*
**************************************************************************/
`timescale 1ns / 1ps
module sdr (
Dq,
Addr,
Ba,
Clk,
Cke,
Cs_n,
Ras_n,
Cas_n,
We_n,
Dqm
);
`include "sdr_parameters.h"
input Clk;
input Cke;
input Cs_n;
input Ras_n;
input Cas_n;
input We_n;
input [ADDR_BITS - 1 : 0] Addr;
input [BA_BITS - 1 : 0] Ba;
inout [DQ_BITS - 1 : 0] Dq;
input [DM_BITS - 1 : 0] Dqm;
reg [DQ_BITS - 1 : 0] Bank0 [0 : mem_sizes];
reg [DQ_BITS - 1 : 0] Bank1 [0 : mem_sizes];
reg [DQ_BITS - 1 : 0] Bank2 [0 : mem_sizes];
reg [DQ_BITS - 1 : 0] Bank3 [0 : mem_sizes];
reg [1 : 0] Bank_addr [0 : 3]; // Bank Address Pipeline
reg [COL_BITS - 1 : 0] Col_addr [0 : 3]; // Column Address Pipeline
reg [3 : 0] Command [0 : 3]; // Command Operation Pipeline
reg [1 : 0] Dqm_reg0, Dqm_reg1; // DQM Operation Pipeline
reg [ADDR_BITS - 1 : 0] B0_row_addr, B1_row_addr, B2_row_addr, B3_row_addr;
reg [ADDR_BITS - 1 : 0] Mode_reg;
reg [DQ_BITS - 1 : 0] Dq_reg, Dq_dqm;
reg [COL_BITS - 1 : 0] Col_temp, Burst_counter;
reg Act_b0, Act_b1, Act_b2, Act_b3; // Bank Activate
reg Pc_b0, Pc_b1, Pc_b2, Pc_b3; // Bank Precharge
reg [1 : 0] Bank_precharge [0 : 3]; // Precharge Command
reg A10_precharge [0 : 3]; // Addr[10] = 1 (All banks)
reg Auto_precharge [0 : 3]; // RW Auto Precharge (Bank)
reg Read_precharge [0 : 3]; // R Auto Precharge
reg Write_precharge [0 : 3]; // W Auto Precharge
reg RW_interrupt_read [0 : 3]; // RW Interrupt Read with Auto Precharge
reg RW_interrupt_write [0 : 3]; // RW Interrupt Write with Auto Precharge
reg [1 : 0] RW_interrupt_bank; // RW Interrupt Bank
integer RW_interrupt_counter [0 : 3]; // RW Interrupt Counter
integer Count_precharge [0 : 3]; // RW Auto Precharge Counter
reg Data_in_enable;
reg Data_out_enable;
reg [1 : 0] Bank, Prev_bank;
reg [ADDR_BITS - 1 : 0] Row;
reg [COL_BITS - 1 : 0] Col, Col_brst;
// Internal system clock
reg CkeZ, Sys_clk;
// Commands Decode
wire Active_enable = ~Cs_n & ~Ras_n & Cas_n & We_n;
wire Aref_enable = ~Cs_n & ~Ras_n & ~Cas_n & We_n;
wire Burst_term = ~Cs_n & Ras_n & Cas_n & ~We_n;
wire Mode_reg_enable = ~Cs_n & ~Ras_n & ~Cas_n & ~We_n;
wire Prech_enable = ~Cs_n & ~Ras_n & Cas_n & ~We_n;
wire Read_enable = ~Cs_n & Ras_n & ~Cas_n & We_n;
wire Write_enable = ~Cs_n & Ras_n & ~Cas_n & ~We_n;
// Burst Length Decode
wire Burst_length_1 = ~Mode_reg[2] & ~Mode_reg[1] & ~Mode_reg[0];
wire Burst_length_2 = ~Mode_reg[2] & ~Mode_reg[1] & Mode_reg[0];
wire Burst_length_4 = ~Mode_reg[2] & Mode_reg[1] & ~Mode_reg[0];
wire Burst_length_8 = ~Mode_reg[2] & Mode_reg[1] & Mode_reg[0];
wire Burst_length_f = Mode_reg[2] & Mode_reg[1] & Mode_reg[0];
// CAS Latency Decode
wire [2 : 0] Cas_latency = {Mode_reg[6], Mode_reg[5], Mode_reg[4]};
// Write Burst Mode
wire Write_burst_mode = Mode_reg[9];
wire Debug = 1'b1; // Debug messages : 1 = On
wire Dq_chk = Sys_clk & Data_in_enable; // Check setup/hold time for DQ
assign Dq = Dq_reg; // DQ buffer
// Commands Operation
`define ACT 0
`define NOP 1
`define READ 2
`define WRITE 3
`define PRECH 4
`define A_REF 5
`define BST 6
`define LMR 7
// These timing dynamically adjust based on CAS Latency
time tAC, tHZ;
// Timing Check variable
time MRD_chk;
time WR_chkm [0 : 3];
time RFC_chk, RRD_chk;
time RC_chk0, RC_chk1, RC_chk2, RC_chk3;
time RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3;
time RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3;
time RP_chk0, RP_chk1, RP_chk2, RP_chk3;
initial begin
Dq_reg = {DQ_BITS{1'bz}};
Data_in_enable = 0; Data_out_enable = 0;
Act_b0 = 1; Act_b1 = 1; Act_b2 = 1; Act_b3 = 1;
Pc_b0 = 0; Pc_b1 = 0; Pc_b2 = 0; Pc_b3 = 0;
WR_chkm[0] = 0; WR_chkm[1] = 0; WR_chkm[2] = 0; WR_chkm[3] = 0;
RW_interrupt_read[0] = 0; RW_interrupt_read[1] = 0; RW_interrupt_read[2] = 0; RW_interrupt_read[3] = 0;
RW_interrupt_write[0] = 0; RW_interrupt_write[1] = 0; RW_interrupt_write[2] = 0; RW_interrupt_write[3] = 0;
MRD_chk = 0; RFC_chk = 0; RRD_chk = 0;
RAS_chk0 = 0; RAS_chk1 = 0; RAS_chk2 = 0; RAS_chk3 = 0;
RCD_chk0 = 0; RCD_chk1 = 0; RCD_chk2 = 0; RCD_chk3 = 0;
RC_chk0 = 0; RC_chk1 = 0; RC_chk2 = 0; RC_chk3 = 0;
RP_chk0 = 0; RP_chk1 = 0; RP_chk2 = 0; RP_chk3 = 0;
$timeformat (-9, 1, " ns", 12);
end
// System clock generator
always begin
@ (posedge Clk) begin
Sys_clk = CkeZ;
CkeZ = Cke;
end
@ (negedge Clk) begin
Sys_clk = 1'b0;
end
end
// Adjust tAC, tHZ based on CAS Latency
always @ (Cas_latency) begin
case (Cas_latency)
1 : begin tAC = tAC1; tHZ = tHZ1; end
2 : begin tAC = tAC2; tHZ = tHZ2; end
3 : begin tAC = tAC3; tHZ = tHZ3; end
endcase
end
always @ (posedge Sys_clk) begin
// Internal Commamd Pipelined
Command[0] = Command[1];
Command[1] = Command[2];
Command[2] = Command[3];
Command[3] = `NOP;
Col_addr[0] = Col_addr[1];
Col_addr[1] = Col_addr[2];
Col_addr[2] = Col_addr[3];
Col_addr[3] = {COL_BITS{1'b0}};
Bank_addr[0] = Bank_addr[1];
Bank_addr[1] = Bank_addr[2];
Bank_addr[2] = Bank_addr[3];
Bank_addr[3] = 2'b0;
Bank_precharge[0] = Bank_precharge[1];
Bank_precharge[1] = Bank_precharge[2];
Bank_precharge[2] = Bank_precharge[3];
Bank_precharge[3] = 2'b0;
A10_precharge[0] = A10_precharge[1];
A10_precharge[1] = A10_precharge[2];
A10_precharge[2] = A10_precharge[3];
A10_precharge[3] = 1'b0;
// Dqm pipeline for Read
Dqm_reg0 = Dqm_reg1;
Dqm_reg1 = Dqm;
// Read or Write with Auto Precharge Counter
if (Auto_precharge[0] === 1'b1) begin
Count_precharge[0] = Count_precharge[0] + 1;
end
if (Auto_precharge[1] === 1'b1) begin
Count_precharge[1] = Count_precharge[1] + 1;
end
if (Auto_precharge[2] === 1'b1) begin
Count_precharge[2] = Count_precharge[2] + 1;
end
if (Auto_precharge[3] === 1'b1) begin
Count_precharge[3] = Count_precharge[3] + 1;
end
// Read or Write Interrupt Counter
if (RW_interrupt_write[0] === 1'b1) begin
RW_interrupt_counter[0] = RW_interrupt_counter[0] + 1;
end
if (RW_interrupt_write[1] === 1'b1) begin
RW_interrupt_counter[1] = RW_interrupt_counter[1] + 1;
end
if (RW_interrupt_write[2] === 1'b1) begin
RW_interrupt_counter[2] = RW_interrupt_counter[2] + 1;
end
if (RW_interrupt_write[3] === 1'b1) begin
RW_interrupt_counter[3] = RW_interrupt_counter[3] + 1;
end
// tMRD Counter
MRD_chk = MRD_chk + 1;
// Auto Refresh
if (Aref_enable === 1'b1) begin
if (Debug) begin
$display ("%m : at time %t AREF : Auto Refresh", $time);
end
// Auto Refresh to Auto Refresh
if ($time - RFC_chk < tRFC) begin
$display ("%m : at time %t ERROR: tRFC violation during Auto Refresh", $time);
end
// Precharge to Auto Refresh
if (($time - RP_chk0 < tRP) || ($time - RP_chk1 < tRP) ||
($time - RP_chk2 < tRP) || ($time - RP_chk3 < tRP)) begin
$display ("%m : at time %t ERROR: tRP violation during Auto Refresh", $time);
end
// Precharge to Refresh
if (Pc_b0 === 1'b0 || Pc_b1 === 1'b0 || Pc_b2 === 1'b0 || Pc_b3 === 1'b0) begin
$display ("%m : at time %t ERROR: All banks must be Precharge before Auto Refresh", $time);
end
// Load Mode Register to Auto Refresh
if (MRD_chk < tMRD) begin
$display ("%m : at time %t ERROR: tMRD violation during Auto Refresh", $time);
end
// Record Current tRFC time
RFC_chk = $time;
end
// Load Mode Register
if (Mode_reg_enable === 1'b1) begin
// Register Mode
Mode_reg = Addr;
// Decode CAS Latency, Burst Length, Burst Type, and Write Burst Mode
if (Debug) begin
$display ("%m : at time %t LMR : Load Mode Register", $time);
// CAS Latency
case (Addr[6 : 4])
3'b010 : $display ("%m : CAS Latency = 2");
3'b011 : $display ("%m : CAS Latency = 3");
default : $display ("%m : CAS Latency = Reserved");
endcase
// Burst Length
case (Addr[2 : 0])
3'b000 : $display ("%m : Burst Length = 1");
3'b001 : $display ("%m : Burst Length = 2");
3'b010 : $display ("%m : Burst Length = 4");
3'b011 : $display ("%m : Burst Length = 8");
3'b111 : $display ("%m : Burst Length = Full");
default : $display ("%m : Burst Length = Reserved");
endcase
// Burst Type
if (Addr[3] === 1'b0) begin
$display ("%m : Burst Type = Sequential");
end else if (Addr[3] === 1'b1) begin
$display ("%m : Burst Type = Interleaved");
end else begin
$display ("%m : Burst Type = Reserved");
end
// Write Burst Mode
if (Addr[9] === 1'b0) begin
$display ("%m : Write Burst Mode = Programmed Burst Length");
end else if (Addr[9] === 1'b1) begin
$display ("%m : Write Burst Mode = Single Location Access");
end else begin
$display ("%m : Write Burst Mode = Reserved");
end
end
// Precharge to Load Mode Register
if (Pc_b0 === 1'b0 && Pc_b1 === 1'b0 && Pc_b2 === 1'b0 && Pc_b3 === 1'b0) begin
$display ("%m : at time %t ERROR: all banks must be Precharge before Load Mode Register", $time);
end
// Precharge to Load Mode Register
if (($time - RP_chk0 < tRP) || ($time - RP_chk1 < tRP) ||
($time - RP_chk2 < tRP) || ($time - RP_chk3 < tRP)) begin
$display ("%m : at time %t ERROR: tRP violation during Load Mode Register", $time);
end
// Auto Refresh to Load Mode Register
if ($time - RFC_chk < tRFC) begin
$display ("%m : at time %t ERROR: tRFC violation during Load Mode Register", $time);
end
// Load Mode Register to Load Mode Register
if (MRD_chk < tMRD) begin
$display ("%m : at time %t ERROR: tMRD violation during Load Mode Register", $time);
end
// Reset MRD Counter
MRD_chk = 0;
end
// Active Block (Latch Bank Address and Row Address)
if (Active_enable === 1'b1) begin
// Activate an open bank can corrupt data
if ((Ba === 2'b00 && Act_b0 === 1'b1) || (Ba === 2'b01 && Act_b1 === 1'b1) ||
(Ba === 2'b10 && Act_b2 === 1'b1) || (Ba === 2'b11 && Act_b3 === 1'b1)) begin
$display ("%m : at time %t ERROR: Bank already activated -- data can be corrupted", $time);
end
// Activate Bank 0
if (Ba === 2'b00 && Pc_b0 === 1'b1) begin
// Debug Message
if (Debug) begin
$display ("%m : at time %t ACT : Bank = 0 Row = %d", $time, Addr);
end
// ACTIVE to ACTIVE command period
if ($time - RC_chk0 < tRC) begin
$display ("%m : at time %t ERROR: tRC violation during Activate bank 0", $time);
end
// Precharge to Activate Bank 0
if ($time - RP_chk0 < tRP) begin
$display ("%m : at time %t ERROR: tRP violation during Activate bank 0", $time);
end
// Record variables
Act_b0 = 1'b1;
Pc_b0 = 1'b0;
B0_row_addr = Addr [ADDR_BITS - 1 : 0];
RAS_chk0 = $time;
RC_chk0 = $time;
RCD_chk0 = $time;
end
if (Ba == 2'b01 && Pc_b1 == 1'b1) begin
// Debug Message
if (Debug) begin
$display ("%m : at time %t ACT : Bank = 1 Row = %d", $time, Addr);
end
// ACTIVE to ACTIVE command period
if ($time - RC_chk1 < tRC) begin
$display ("%m : at time %t ERROR: tRC violation during Activate bank 1", $time);
end
// Precharge to Activate Bank 1
if ($time - RP_chk1 < tRP) begin
$display ("%m : at time %t ERROR: tRP violation during Activate bank 1", $time);
end
// Record variables
Act_b1 = 1'b1;
Pc_b1 = 1'b0;
B1_row_addr = Addr [ADDR_BITS - 1 : 0];
RAS_chk1 = $time;
RC_chk1 = $time;
RCD_chk1 = $time;
end
if (Ba == 2'b10 && Pc_b2 == 1'b1) begin
// Debug Message
if (Debug) begin
$display ("%m : at time %t ACT : Bank = 2 Row = %d", $time, Addr);
end
// ACTIVE to ACTIVE command period
if ($time - RC_chk2 < tRC) begin
$display ("%m : at time %t ERROR: tRC violation during Activate bank 2", $time);
end
// Precharge to Activate Bank 2
if ($time - RP_chk2 < tRP) begin
$display ("%m : at time %t ERROR: tRP violation during Activate bank 2", $time);
end
// Record variables
Act_b2 = 1'b1;
Pc_b2 = 1'b0;
B2_row_addr = Addr [ADDR_BITS - 1 : 0];
RAS_chk2 = $time;
RC_chk2 = $time;
RCD_chk2 = $time;
end
if (Ba == 2'b11 && Pc_b3 == 1'b1) begin
// Debug Message
if (Debug) begin
$display ("%m : at time %t ACT : Bank = 3 Row = %d", $time, Addr);
end
// ACTIVE to ACTIVE command period
if ($time - RC_chk3 < tRC) begin
$display ("%m : at time %t ERROR: tRC violation during Activate bank 3", $time);
end
// Precharge to Activate Bank 3
if ($time - RP_chk3 < tRP) begin
$display ("%m : at time %t ERROR: tRP violation during Activate bank 3", $time);
end
// Record variables
Act_b3 = 1'b1;
Pc_b3 = 1'b0;
B3_row_addr = Addr [ADDR_BITS - 1 : 0];
RAS_chk3 = $time;
RC_chk3 = $time;
RCD_chk3 = $time;
end
// Active Bank A to Active Bank B
if ((Prev_bank != Ba) && ($time - RRD_chk < tRRD)) begin
$display ("%m : at time %t ERROR: tRRD violation during Activate bank = %d", $time, Ba);
end
// Auto Refresh to Activate
if ($time - RFC_chk < tRFC) begin
$display ("%m : at time %t ERROR: tRFC violation during Activate bank = %d", $time, Ba);
end
// Load Mode Register to Active
if (MRD_chk < tMRD ) begin
$display ("%m : at time %t ERROR: tMRD violation during Activate bank = %d", $time, Ba);
end
// Record variables for checking violation
RRD_chk = $time;
Prev_bank = Ba;
end
// Precharge Block
if (Prech_enable == 1'b1) begin
// Load Mode Register to Precharge
if ($time - MRD_chk < tMRD) begin
$display ("%m : at time %t ERROR: tMRD violaiton during Precharge", $time);
end
// Precharge Bank 0
if ((Addr[10] === 1'b1 || (Addr[10] === 1'b0 && Ba === 2'b00)) && Act_b0 === 1'b1) begin
Act_b0 = 1'b0;
Pc_b0 = 1'b1;
RP_chk0 = $time;
// Activate to Precharge
if ($time - RAS_chk0 < tRAS) begin
$display ("%m : at time %t ERROR: tRAS violation during Precharge", $time);
end
// tWR violation check for write
if ($time - WR_chkm[0] < tWRm) begin
$display ("%m : at time %t ERROR: tWR violation during Precharge", $time);
end
end
// Precharge Bank 1
if ((Addr[10] === 1'b1 || (Addr[10] === 1'b0 && Ba === 2'b01)) && Act_b1 === 1'b1) begin
Act_b1 = 1'b0;
Pc_b1 = 1'b1;
RP_chk1 = $time;
// Activate to Precharge
if ($time - RAS_chk1 < tRAS) begin
$display ("%m : at time %t ERROR: tRAS violation during Precharge", $time);
end
// tWR violation check for write
if ($time - WR_chkm[1] < tWRm) begin
$display ("%m : at time %t ERROR: tWR violation during Precharge", $time);
end
end
// Precharge Bank 2
if ((Addr[10] === 1'b1 || (Addr[10] === 1'b0 && Ba === 2'b10)) && Act_b2 === 1'b1) begin
Act_b2 = 1'b0;
Pc_b2 = 1'b1;
RP_chk2 = $time;
// Activate to Precharge
if ($time - RAS_chk2 < tRAS) begin
$display ("%m : at time %t ERROR: tRAS violation during Precharge", $time);
end
// tWR violation check for write
if ($time - WR_chkm[2] < tWRm) begin
$display ("%m : at time %t ERROR: tWR violation during Precharge", $time);
end
end
// Precharge Bank 3
if ((Addr[10] === 1'b1 || (Addr[10] === 1'b0 && Ba === 2'b11)) && Act_b3 === 1'b1) begin
Act_b3 = 1'b0;
Pc_b3 = 1'b1;
RP_chk3 = $time;
// Activate to Precharge
if ($time - RAS_chk3 < tRAS) begin
$display ("%m : at time %t ERROR: tRAS violation during Precharge", $time);
end
// tWR violation check for write
if ($time - WR_chkm[3] < tWRm) begin
$display ("%m : at time %t ERROR: tWR violation during Precharge", $time);
end
end
// Precharge truncation with DQM set
if ((Data_in_enable == 1'b1) && ~(&Dqm)) begin
$display ("%m : at time %t ERROR: DQM not asserted during Precharge truncation", $time);
end
// Terminate a Write Immediately (if same bank or all banks)
if (Data_in_enable === 1'b1 && (Bank === Ba || Addr[10] === 1'b1)) begin
Data_in_enable = 1'b0;
end
// Precharge Command Pipeline for Read
Command[Cas_latency - 1] = `PRECH;
Bank_precharge[Cas_latency - 1] = Ba;
A10_precharge[Cas_latency - 1] = Addr[10];
end
// Burst terminate
if (Burst_term === 1'b1) begin
// Terminate a Write Immediately
if (Data_in_enable == 1'b1) begin
Data_in_enable = 1'b0;
end
// Terminate a Read Depend on CAS Latency
Command[Cas_latency - 1] = `BST;
// Display debug message
if (Debug) begin
$display ("%m : at time %t BST : Burst Terminate",$time);
end
end
// Read, Write, Column Latch
if (Read_enable === 1'b1) begin
// Check to see if bank is open (ACT)
if ((Ba == 2'b00 && Pc_b0 == 1'b1) || (Ba == 2'b01 && Pc_b1 == 1'b1) ||
(Ba == 2'b10 && Pc_b2 == 1'b1) || (Ba == 2'b11 && Pc_b3 == 1'b1)) begin
$display("%m : at time %t ERROR: Bank is not Activated for Read", $time);
end
// Activate to Read or Write
if ((Ba == 2'b00) && ($time - RCD_chk0 < tRCD) ||
(Ba == 2'b01) && ($time - RCD_chk1 < tRCD) ||
(Ba == 2'b10) && ($time - RCD_chk2 < tRCD) ||
(Ba == 2'b11) && ($time - RCD_chk3 < tRCD)) begin
$display("%m : at time %t ERROR: tRCD violation during Read", $time);
end
// CAS Latency pipeline
Command[Cas_latency - 1] = `READ;
Col_addr[Cas_latency - 1] = Addr;
Bank_addr[Cas_latency - 1] = Ba;
// Read interrupt Write (terminate Write immediately)
if (Data_in_enable == 1'b1) begin
Data_in_enable = 1'b0;
// Interrupting a Write with Autoprecharge
if (Auto_precharge[RW_interrupt_bank] == 1'b1 && Write_precharge[RW_interrupt_bank] == 1'b1) begin
RW_interrupt_write[RW_interrupt_bank] = 1'b1;
RW_interrupt_counter[RW_interrupt_bank] = 0;
// Display debug message
if (Debug) begin
$display ("%m : at time %t NOTE : Read interrupt Write with Autoprecharge", $time);
end
end
end
// Read with Auto Precharge
if (Addr[10] == 1'b1) begin
Auto_precharge[Ba] = 1'b1;
Count_precharge[Ba] = 0;
RW_interrupt_bank = Ba;
Read_precharge[Ba] = 1'b1;
end
end
// Write Command
if (Write_enable == 1'b1) begin
// Activate to Write
if ((Ba == 2'b00 && Pc_b0 == 1'b1) || (Ba == 2'b01 && Pc_b1 == 1'b1) ||
(Ba == 2'b10 && Pc_b2 == 1'b1) || (Ba == 2'b11 && Pc_b3 == 1'b1)) begin
$display("%m : at time %t ERROR: Bank is not Activated for Write", $time);
end
// Activate to Read or Write
if ((Ba == 2'b00) && ($time - RCD_chk0 < tRCD) ||
(Ba == 2'b01) && ($time - RCD_chk1 < tRCD) ||
(Ba == 2'b10) && ($time - RCD_chk2 < tRCD) ||
(Ba == 2'b11) && ($time - RCD_chk3 < tRCD)) begin
$display("%m : at time %t ERROR: tRCD violation during Read", $time);
end
// Latch Write command, Bank, and Column
Command[0] = `WRITE;
Col_addr[0] = Addr;
Bank_addr[0] = Ba;
// Write interrupt Write (terminate Write immediately)
if (Data_in_enable == 1'b1) begin
Data_in_enable = 1'b0;
// Interrupting a Write with Autoprecharge
if (Auto_precharge[RW_interrupt_bank] == 1'b1 && Write_precharge[RW_interrupt_bank] == 1'b1) begin
RW_interrupt_write[RW_interrupt_bank] = 1'b1;
// Display debug message
if (Debug) begin
$display ("%m : at time %t NOTE : Read Bank %d interrupt Write Bank %d with Autoprecharge", $time, Ba, RW_interrupt_bank);
end
end
end
// Write interrupt Read (terminate Read immediately)
if (Data_out_enable == 1'b1) begin
Data_out_enable = 1'b0;
// Interrupting a Read with Autoprecharge
if (Auto_precharge[RW_interrupt_bank] == 1'b1 && Read_precharge[RW_interrupt_bank] == 1'b1) begin
RW_interrupt_read[RW_interrupt_bank] = 1'b1;
// Display debug message
if (Debug) begin
$display ("%m : at time %t NOTE : Write Bank %d interrupt Read Bank %d with Autoprecharge", $time, Ba, RW_interrupt_bank);
end
end
end
// Write with Auto Precharge
if (Addr[10] == 1'b1) begin
Auto_precharge[Ba] = 1'b1;
Count_precharge[Ba] = 0;
RW_interrupt_bank = Ba;
Write_precharge[Ba] = 1'b1;
end
end
/*
Write with Auto Precharge Calculation
The device start internal precharge when:
1. Meet minimum tRAS requirement
and 2. tWR cycle(s) after last valid data
or 3. Interrupt by a Read or Write (with or without Auto Precharge)
Note: Model is starting the internal precharge 1 cycle after they meet all the
requirement but tRP will be compensate for the time after the 1 cycle.
*/
if ((Auto_precharge[0] == 1'b1) && (Write_precharge[0] == 1'b1)) begin
if ((($time - RAS_chk0 >= tRAS) && // Case 1
(((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [0] >= 1) || // Case 2
(Burst_length_2 == 1'b1 && Count_precharge [0] >= 2) ||
(Burst_length_4 == 1'b1 && Count_precharge [0] >= 4) ||
(Burst_length_8 == 1'b1 && Count_precharge [0] >= 8))) ||
(RW_interrupt_write[0] == 1'b1 && RW_interrupt_counter[0] >= 1)) begin // Case 3
Auto_precharge[0] = 1'b0;
Write_precharge[0] = 1'b0;
RW_interrupt_write[0] = 1'b0;
Pc_b0 = 1'b1;
Act_b0 = 1'b0;
RP_chk0 = $time + tWRa;
if (Debug) begin
$display ("%m : at time %t NOTE : Start Internal Auto Precharge for Bank 0", $time);
end
end
end
if ((Auto_precharge[1] == 1'b1) && (Write_precharge[1] == 1'b1)) begin
if ((($time - RAS_chk1 >= tRAS) && // Case 1
(((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [1] >= 1) || // Case 2
(Burst_length_2 == 1'b1 && Count_precharge [1] >= 2) ||
(Burst_length_4 == 1'b1 && Count_precharge [1] >= 4) ||
(Burst_length_8 == 1'b1 && Count_precharge [1] >= 8))) ||
(RW_interrupt_write[1] == 1'b1 && RW_interrupt_counter[1] >= 1)) begin // Case 3
Auto_precharge[1] = 1'b0;
Write_precharge[1] = 1'b0;
RW_interrupt_write[1] = 1'b0;
Pc_b1 = 1'b1;
Act_b1 = 1'b0;
RP_chk1 = $time + tWRa;
if (Debug) begin
$display ("%m : at time %t NOTE : Start Internal Auto Precharge for Bank 1", $time);
end
end
end
if ((Auto_precharge[2] == 1'b1) && (Write_precharge[2] == 1'b1)) begin
if ((($time - RAS_chk2 >= tRAS) && // Case 1
(((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [2] >= 1) || // Case 2
(Burst_length_2 == 1'b1 && Count_precharge [2] >= 2) ||
(Burst_length_4 == 1'b1 && Count_precharge [2] >= 4) ||
(Burst_length_8 == 1'b1 && Count_precharge [2] >= 8))) ||
(RW_interrupt_write[2] == 1'b1 && RW_interrupt_counter[2] >= 1)) begin // Case 3
Auto_precharge[2] = 1'b0;
Write_precharge[2] = 1'b0;
RW_interrupt_write[2] = 1'b0;
Pc_b2 = 1'b1;
Act_b2 = 1'b0;
RP_chk2 = $time + tWRa;
if (Debug) begin
$display ("%m : at time %t NOTE : Start Internal Auto Precharge for Bank 2", $time);
end
end
end
if ((Auto_precharge[3] == 1'b1) && (Write_precharge[3] == 1'b1)) begin
if ((($time - RAS_chk3 >= tRAS) && // Case 1
(((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [3] >= 1) || // Case 2
(Burst_length_2 == 1'b1 && Count_precharge [3] >= 2) ||
(Burst_length_4 == 1'b1 && Count_precharge [3] >= 4) ||
(Burst_length_8 == 1'b1 && Count_precharge [3] >= 8))) ||
(RW_interrupt_write[3] == 1'b1 && RW_interrupt_counter[3] >= 1)) begin // Case 3
Auto_precharge[3] = 1'b0;
Write_precharge[3] = 1'b0;
RW_interrupt_write[3] = 1'b0;
Pc_b3 = 1'b1;
Act_b3 = 1'b0;
RP_chk3 = $time + tWRa;
if (Debug) begin
$display ("%m : at time %t NOTE : Start Internal Auto Precharge for Bank 3", $time);
end
end
end
// Read with Auto Precharge Calculation
// The device start internal precharge:
// 1. Meet minimum tRAS requirement
// and 2. CAS Latency - 1 cycles before last burst
// or 3. Interrupt by a Read or Write (with or without AutoPrecharge)
if ((Auto_precharge[0] == 1'b1) && (Read_precharge[0] == 1'b1)) begin
if ((($time - RAS_chk0 >= tRAS) && // Case 1
((Burst_length_1 == 1'b1 && Count_precharge[0] >= 1) || // Case 2
(Burst_length_2 == 1'b1 && Count_precharge[0] >= 2) ||
(Burst_length_4 == 1'b1 && Count_precharge[0] >= 4) ||
(Burst_length_8 == 1'b1 && Count_precharge[0] >= 8))) ||
(RW_interrupt_read[0] == 1'b1)) begin // Case 3
Pc_b0 = 1'b1;
Act_b0 = 1'b0;
RP_chk0 = $time;
Auto_precharge[0] = 1'b0;
Read_precharge[0] = 1'b0;
RW_interrupt_read[0] = 1'b0;
if (Debug) begin
$display ("%m : at time %t NOTE : Start Internal Auto Precharge for Bank 0", $time);
end
end
end
if ((Auto_precharge[1] == 1'b1) && (Read_precharge[1] == 1'b1)) begin
if ((($time - RAS_chk1 >= tRAS) &&
((Burst_length_1 == 1'b1 && Count_precharge[1] >= 1) ||
(Burst_length_2 == 1'b1 && Count_precharge[1] >= 2) ||
(Burst_length_4 == 1'b1 && Count_precharge[1] >= 4) ||
(Burst_length_8 == 1'b1 && Count_precharge[1] >= 8))) ||
(RW_interrupt_read[1] == 1'b1)) begin
Pc_b1 = 1'b1;
Act_b1 = 1'b0;
RP_chk1 = $time;
Auto_precharge[1] = 1'b0;
Read_precharge[1] = 1'b0;
RW_interrupt_read[1] = 1'b0;
if (Debug) begin
$display ("%m : at time %t NOTE : Start Internal Auto Precharge for Bank 1", $time);
end
end
end
if ((Auto_precharge[2] == 1'b1) && (Read_precharge[2] == 1'b1)) begin
if ((($time - RAS_chk2 >= tRAS) &&
((Burst_length_1 == 1'b1 && Count_precharge[2] >= 1) ||
(Burst_length_2 == 1'b1 && Count_precharge[2] >= 2) ||
(Burst_length_4 == 1'b1 && Count_precharge[2] >= 4) ||
(Burst_length_8 == 1'b1 && Count_precharge[2] >= 8))) ||
(RW_interrupt_read[2] == 1'b1)) begin
Pc_b2 = 1'b1;
Act_b2 = 1'b0;
RP_chk2 = $time;
Auto_precharge[2] = 1'b0;
Read_precharge[2] = 1'b0;
RW_interrupt_read[2] = 1'b0;
if (Debug) begin
$display ("%m : at time %t NOTE : Start Internal Auto Precharge for Bank 2", $time);
end
end
end
if ((Auto_precharge[3] == 1'b1) && (Read_precharge[3] == 1'b1)) begin
if ((($time - RAS_chk3 >= tRAS) &&
((Burst_length_1 == 1'b1 && Count_precharge[3] >= 1) ||
(Burst_length_2 == 1'b1 && Count_precharge[3] >= 2) ||
(Burst_length_4 == 1'b1 && Count_precharge[3] >= 4) ||
(Burst_length_8 == 1'b1 && Count_precharge[3] >= 8))) ||
(RW_interrupt_read[3] == 1'b1)) begin
Pc_b3 = 1'b1;
Act_b3 = 1'b0;
RP_chk3 = $time;
Auto_precharge[3] = 1'b0;
Read_precharge[3] = 1'b0;
RW_interrupt_read[3] = 1'b0;
if (Debug) begin
$display("%m : at time %t NOTE : Start Internal Auto Precharge for Bank 3", $time);
end
end
end
// Internal Precharge or Bst
if (Command[0] == `PRECH) begin // Precharge terminate a read with same bank or all banks
if (Bank_precharge[0] == Bank || A10_precharge[0] == 1'b1) begin
if (Data_out_enable == 1'b1) begin
Data_out_enable = 1'b0;
end
end
end else if (Command[0] == `BST) begin // BST terminate a read to current bank
if (Data_out_enable == 1'b1) begin
Data_out_enable = 1'b0;
end
end
if (Data_out_enable == 1'b0) begin
Dq_reg <= #tOH {DQ_BITS{1'bz}};
end
// Detect Read or Write command
if (Command[0] == `READ) begin
Bank = Bank_addr[0];
Col = Col_addr[0];
Col_brst = Col_addr[0];
case (Bank_addr[0])
2'b00 : Row = B0_row_addr;
2'b01 : Row = B1_row_addr;
2'b10 : Row = B2_row_addr;
2'b11 : Row = B3_row_addr;
endcase
Burst_counter = 0;
Data_in_enable = 1'b0;
Data_out_enable = 1'b1;
end else if (Command[0] == `WRITE) begin
Bank = Bank_addr[0];
Col = Col_addr[0];
Col_brst = Col_addr[0];
case (Bank_addr[0])
2'b00 : Row = B0_row_addr;
2'b01 : Row = B1_row_addr;
2'b10 : Row = B2_row_addr;
2'b11 : Row = B3_row_addr;
endcase
Burst_counter = 0;
Data_in_enable = 1'b1;
Data_out_enable = 1'b0;
end
// DQ buffer (Driver/Receiver)
if (Data_in_enable == 1'b1) begin // Writing Data to Memory
// Array buffer
case (Bank)
2'b00 : Dq_dqm = Bank0 [{Row, Col}];
2'b01 : Dq_dqm = Bank1 [{Row, Col}];
2'b10 : Dq_dqm = Bank2 [{Row, Col}];
2'b11 : Dq_dqm = Bank3 [{Row, Col}];
endcase
// Dqm operation
`ifdef x4
if (Dqm[0] == 1'b0) begin
Dq_dqm [ 3 : 0] = Dq [ 3 : 0];
end
`elsif x8
if (Dqm[0] == 1'b0) begin
Dq_dqm [ 7 : 0] = Dq [ 7 : 0];
end
`elsif x16
if (Dqm[0] == 1'b0) begin
Dq_dqm [ 7 : 0] = Dq [ 7 : 0];
end
if (Dqm[1] == 1'b0) begin
Dq_dqm [15 : 8] = Dq [15 : 8];
end
`endif
// Write to memory
case (Bank)
2'b00 : Bank0 [{Row, Col}] = Dq_dqm;
2'b01 : Bank1 [{Row, Col}] = Dq_dqm;
2'b10 : Bank2 [{Row, Col}] = Dq_dqm;
2'b11 : Bank3 [{Row, Col}] = Dq_dqm;
endcase
// Display debug message
if (Dqm !== 2'b11) begin
// Record tWR for manual precharge
WR_chkm [Bank] = $time;
if (Debug) begin
$display("%m : at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = %h", $time, Bank, Row, Col, Dq_dqm);
end
end else begin
if (Debug) begin
$display("%m : at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);
end
end
// Advance burst counter subroutine
#tHZ Burst_decode;
end else if (Data_out_enable == 1'b1) begin // Reading Data from Memory
// Array buffer
case (Bank)
2'b00 : Dq_dqm = Bank0[{Row, Col}];
2'b01 : Dq_dqm = Bank1[{Row, Col}];
2'b10 : Dq_dqm = Bank2[{Row, Col}];
2'b11 : Dq_dqm = Bank3[{Row, Col}];
endcase
// Dqm operation
`ifdef x4
if (Dqm_reg0 [0] == 1'b1) begin
Dq_dqm [ 3 : 0] = 4'bz;
end
`elsif x8
if (Dqm_reg0 [0] == 1'b1) begin
Dq_dqm [ 7 : 0] = 8'bz;
end
`elsif x16
if (Dqm_reg0 [0] == 1'b1) begin
Dq_dqm [ 7 : 0] = 8'bz;
end
if (Dqm_reg0 [1] == 1'b1) begin
Dq_dqm [15 : 8] = 8'bz;
end
`endif
// Display debug message
Dq_reg = #tAC Dq_dqm;
if (Debug) begin
$display("%m : at time %t READ : Bank = %d Row = %d, Col = %d, Dqm = %b, Data = %h", $time, Bank, Row, Col, Dqm_reg0, Dq_reg);
end
// Advance burst counter subroutine
Burst_decode;
end
end
// Burst counter decode
task Burst_decode;
begin
// Advance Burst Counter
Burst_counter = Burst_counter + 1;
// Burst Type
if (Mode_reg[3] == 1'b0) begin // Sequential Burst
Col_temp = Col + 1;
end else if (Mode_reg[3] == 1'b1) begin // Interleaved Burst
Col_temp[2] = Burst_counter[2] ^ Col_brst[2];
Col_temp[1] = Burst_counter[1] ^ Col_brst[1];
Col_temp[0] = Burst_counter[0] ^ Col_brst[0];
end
// Burst Length
if (Burst_length_2) begin // Burst Length = 2
Col [0] = Col_temp [0];
end else if (Burst_length_4) begin // Burst Length = 4
Col [1 : 0] = Col_temp [1 : 0];
end else if (Burst_length_8) begin // Burst Length = 8
Col [2 : 0] = Col_temp [2 : 0];
end else begin // Burst Length = FULL
Col = Col_temp;
end
// Burst Read Single Write
if (Write_burst_mode == 1'b1) begin
Data_in_enable = 1'b0;
end
// Data Counter
if (Burst_length_1 == 1'b1) begin
if (Burst_counter >= 1) begin
Data_in_enable = 1'b0;
Data_out_enable = 1'b0;
end
end else if (Burst_length_2 == 1'b1) begin
if (Burst_counter >= 2) begin
Data_in_enable = 1'b0;
Data_out_enable = 1'b0;
end
end else if (Burst_length_4 == 1'b1) begin
if (Burst_counter >= 4) begin
Data_in_enable = 1'b0;
Data_out_enable = 1'b0;
end
end else if (Burst_length_8 == 1'b1) begin
if (Burst_counter >= 8) begin
Data_in_enable = 1'b0;
Data_out_enable = 1'b0;
end
end
end
endtask
// Timing Parameters for -75 (133 MHz @ CL3)
specify
specparam
tAH = 0.8, // Addr, Ba Hold Time
tAS = 1.5, // Addr, Ba Setup Time
tCK3 = 7.5,
tCH = 2.5, // Clock High-Level Width
tCL = 2.5, // Clock Low-Level Width
tCKH = 0.8, // CKE Hold Time
tCKS = 1.5, // CKE Setup Time
tCMH = 0.8, // CS#, RAS#, CAS#, WE#, DQM# Hold Time
tCMS = 1.5, // CS#, RAS#, CAS#, WE#, DQM# Setup Time
tDH = 0.8, // Data-in Hold Time
tDS = 1.5; // Data-in Setup Time
$width (posedge Clk, tCH);
$width (negedge Clk, tCL);
$period (negedge Clk, tCK3);
$period (posedge Clk, tCK3);
$setuphold(posedge Clk, Cke, tCKS, tCKH);
$setuphold(posedge Clk, Cs_n, tCMS, tCMH);
$setuphold(posedge Clk, Cas_n, tCMS, tCMH);
$setuphold(posedge Clk, Ras_n, tCMS, tCMH);
$setuphold(posedge Clk, We_n, tCMS, tCMH);
$setuphold(posedge Clk, Addr, tAS, tAH);
$setuphold(posedge Clk, Ba, tAS, tAH);
$setuphold(posedge Clk, Dqm, tCMS, tCMH);
$setuphold(posedge Dq_chk, Dq, tDS, tDH);
endspecify
endmodule
/***************************************************
* Module Name : sdram_init
* Description : SDRAM初始化模块
**************************************************/
module sdram_init(
Clk,
Rst_n,
Command,
Saddr,
Init_done
);
`include "Sdram_Params.h"
input Clk; //系统时钟信号
input Rst_n; //系统复位信号
output reg [3:0] Command; //SDRAM命令信号
output reg [`ASIZE-1:0] Saddr; //SDRAM地址信号
output Init_done; //初始化完成标识位
localparam init_PRE_TIME = INIT_PRE,
init_AREF1_TIME = INIT_PRE+REF_PRE,
init_AREF2_TIME = INIT_PRE+REF_PRE+REF_REF,
init_LMR_TIME = INIT_PRE+REF_PRE+REF_REF*2,
init_END_TIME = INIT_PRE+REF_PRE+REF_REF*2+LMR_ACT;
//SDRAM初始化过程时间计数器
reg [15:0]init_cnt;
always@(posedge Clk or negedge Rst_n)
begin
if(!Rst_n)
init_cnt <= 16'd0;
else if(init_cnt < init_END_TIME)
init_cnt <= init_cnt + 16'd1;
else
init_cnt <= 16'd0;
end
//SDRAM初始化完成结束标志位
assign Init_done = (init_cnt == init_END_TIME);
//SDRAM初始化过程,类似线性序列机
//相应时刻发出对应的命令和操作
always@(posedge Clk or negedge Rst_n)
begin
if(!Rst_n)begin
Command <= C_NOP;
Saddr <= 0;
end
else begin
case(init_cnt)
init_PRE_TIME:begin
Command <= C_PRE;
Saddr[10] <= 1'b1;
end
init_AREF1_TIME:begin
Command <= C_AREF;
end
init_AREF2_TIME:begin
Command <= C_AREF;
end
init_LMR_TIME:begin
Command <= C_MSET;
Saddr <= {OP_CODE,2'b00,SDR_CL,SDR_BT,SDR_BL};
end
default:begin
Command <= C_NOP;
Saddr <= 0;
end
endcase
end
end
endmodule
/***************************************************
* Module Name : sdram_control
* Description : SDRAM控制器模块
**************************************************/
module sdram_control(
Clk,
Rst_n,
Wr,
Rd,
Caddr,
Raddr,
Baddr,
Wr_data,
Rd_data,
Rd_data_vaild,
Wr_data_vaild,
Wdata_done,
Rdata_done,
Sa,
Ba,
Cs_n,
Cke,
Ras_n,
Cas_n,
We_n,
Dq,
Dqm
);
`include "Sdram_Params.h"
input Clk; //系统时钟信号
input Rst_n; //复位信号,低电平有效
input Wr; //写SDRAM使能信号
input Rd; //读SDRAM使能信号
input [`ASIZE-1:0]Caddr; //写SDRAM时列地址
input [`ASIZE-1:0]Raddr; //写SDRAM时行地址
input [`BSIZE-1:0]Baddr; //写SDRAM时Bank地址
input [`DSIZE-1:0]Wr_data; //待写入SDRAM数据
output[`DSIZE-1:0]Rd_data; //读出SDRAM的数据
output reg Rd_data_vaild; //读SDRAM时数据有效区
output reg Wr_data_vaild; //写SDRAM时数据有效区
output Wdata_done; //一次写突发完成标识位
output Rdata_done; //一次读突发完成标识位
// SDRAM Side
output reg[`ASIZE-1:0]Sa; //SDRAM地址总线
output reg[`BSIZE-1:0]Ba; //SDRAMBank地址
output Cs_n; //SDRAM片选信号
output Cke; //SDRAM时钟使能
output Ras_n; //SDRAM行地址选通
output Cas_n; //SDRAM列地址选通
output We_n; //SDRAM写使能
inout [`DSIZE-1:0] Dq; //SDRAM数据总线
output[`DSIZE/8-1:0] Dqm; //SDRAM数据掩码
//---------------------------------
wire [3:0] init_cmd; //SDRAM初始化命令输出
wire[`ASIZE-1:0]init_addr; //SDRAM初始化地址输出
wire init_done; //SDRAM初始化完成标志位
reg [31:0] ref_time_cnt; //刷新定时计数器
wire ref_time_flag; //刷新定时时间标志位,定时到达时置1
reg [3:0] main_state; //主状态寄存器
reg ref_req; //刷新操作请求
reg ref_opt_done; //一次刷新操作完成标志位
reg wr_opt_done; //一次突发写操作完成标志位
reg rd_opt_done; //一次突发读操作完成标志位
reg wr_req; //写操作请求
reg rd_req; //读操作请求
reg FF; //标记寄存器
reg [3:0] Command; //操作命令,等于{CS_N,RAS_N,CAS_N,WE}
reg [15:0] ref_cnt; //自动刷新过程时间计数器
reg [`ASIZE-1:0]raddr_r; //读写行地址寄存器
reg [`ASIZE-1:0]caddr_r; //读写列地址寄存器
reg [`BSIZE-1:0]baddr_r; //读写bank地址寄存器
reg [15:0] rd_cnt; //一次突发读操作过程时间计数器
reg [15:0] wr_cnt; //一次突发写操作过程时间计数器
wire ref_break_wr; //写操作过程中,刷新定时到来到此次写操作结束有效区间
wire ref_break_rd; //读操作过程中,刷新定时到来到此次读操作结束有效区间
wire wr_break_ref; //刷新过程中,写操作到来到此次刷新结束有效区间
wire rd_break_ref; //刷新过程中,读操作到来到此次刷新结束有效区间
//时钟使能信号
assign Cke = Rst_n;
//SDRAM命令信号组合
assign {Cs_n,Ras_n,Cas_n,We_n} = Command;
//SDRAM数据线,采用三态输出
assign Dq = Wr_data_vaild ? Wr_data:16'bz;
//数据掩码,采用16位数据,掩码为全零
assign Dqm = 2'b00;
//---------------------------------
//主状态机状态
localparam
IDLE = 4'b0001, //空闲
AREF = 4'b0010, //刷新
WRITE = 4'b0100, //写
READ = 4'b1000; //读
//---------------------------------
//SDRAM前期初始化模块例化
sdram_init sdram_init(
.Clk(Clk),
.Rst_n(Rst_n),
.Command(init_cmd),
.Saddr(init_addr),
.Init_done(init_done)
);
//刷新定时计数器
always@(posedge Clk or negedge Rst_n)
begin
if(!Rst_n)
ref_time_cnt <= 0;
else if(ref_time_cnt == AUTO_REF)
ref_time_cnt <= 1;
else if(init_done || ref_time_cnt > 0)
ref_time_cnt <= ref_time_cnt + 10'd1;
else
ref_time_cnt <= ref_time_cnt;
end
//刷新定时时间标志位,定时到达时置1
assign ref_time_flag = (ref_time_cnt == AUTO_REF);
//---------------------------------
//主状态机
always@(posedge Clk or negedge Rst_n)
begin
if(!Rst_n)begin
main_state <= IDLE;
FF <= 1'b1;
end
else begin
case(main_state)
IDLE:begin
Command <= init_cmd;
Sa <= init_addr;
if(init_done)
main_state <= AREF;
else
main_state <= IDLE;
end
AREF:begin
if(FF == 1'b0)
auto_ref;
else begin
if(ref_req)begin
main_state <= AREF;
FF <= 1'b0;
end
else if(wr_req)begin
main_state <= WRITE;
FF <= 1'b0;
end
else if(rd_req)begin
main_state <= READ;
FF <= 1'b0;
end
else
main_state <= AREF;
end
end
WRITE:begin
if(FF == 1'b0)
write_data;
else begin
if(ref_req == 1'b1)begin
main_state <= AREF;
FF <= 1'b0;
end
else if(wr_opt_done & wr_req)begin
main_state <= WRITE;
FF <= 1'b0;
end
else if(wr_opt_done & rd_req)begin
main_state <= READ;
FF <= 1'b0;
end
else if(wr_opt_done&!wr_req&!rd_req)
main_state <= AREF;
else
main_state <= WRITE;
end
end
READ:begin
if(FF == 1'b0)
read_data;
else begin
if(ref_req == 1'b1)begin
main_state <= AREF;
FF <= 1'b0;
end
else if(rd_opt_done & wr_req)begin
main_state <= WRITE;
FF <= 1'b0;
end
else if(rd_opt_done & rd_req)begin
main_state <= READ;
FF <= 1'b0;
end
else if( rd_opt_done&!wr_req&!rd_req)
main_state <= AREF;
else
main_state <= READ;
end
end
endcase
end
end
//---------------------------------
//---------------------------------
//读写行列地址寄存器
always@(posedge Clk or negedge Rst_n)
begin
if(!Rst_n)
begin
raddr_r <= 0;
caddr_r <= 0;
baddr_r <= 0;
end
else if(rd_req || wr_req)
begin
raddr_r <= Raddr;
caddr_r <= Caddr;
baddr_r <= Baddr;
end
else
;
end
//---------------------------------
//---------------------------------
//自动刷新操作任务,采用线性序列机方法
localparam
ref_PRE_TIME = 1'b1, //预充电时刻
ref_REF1_TIME = REF_PRE+1, //第一次自动刷新时刻
ref_REF2_TIME = REF_PRE+REF_REF+1,//第二次自动刷新时刻
ref_END = REF_PRE+REF_REF*2; //自动刷新结束时刻
//自动刷新过程时间计数器
always@(posedge Clk or negedge Rst_n)
begin
if(!Rst_n)
ref_cnt <= 16'd0;
else if(ref_cnt == ref_END)
ref_cnt <= 16'd0;
else if(ref_req || ref_cnt>1'b0)
ref_cnt <= ref_cnt + 16'd1;
else
ref_cnt <= ref_cnt;
end
//一次刷新操作完成标志位
always@(posedge Clk or negedge Rst_n)
begin
if(!Rst_n)
ref_opt_done <= 1'b0;
else if(ref_cnt == ref_END)
ref_opt_done <= 1'b1;
else
ref_opt_done <= 1'b0;
end
//一次突发写操作过程状态标识信号
reg ref_opt;
always@(posedge Clk or negedge Rst_n)
begin
if(!Rst_n)
ref_opt <= 1'b0;
else if(ref_req == 1'b1)
ref_opt <= 1'b1;
else if(ref_opt_done == 1'b1)
ref_opt <= 1'b0;
else
ref_opt <= ref_opt;
end
//自动刷新操作,线性序列机
task auto_ref;
begin
case(ref_cnt)
ref_PRE_TIME:begin
Command <= C_PRE; //预充电
Sa[10] <= 1'b1;
end
ref_REF1_TIME:begin
Command <= C_AREF; //自动刷新
end
ref_REF2_TIME:begin
Command <= C_AREF; //自动刷新
end
ref_END:begin
FF <= 1'b1;
Command <= C_NOP;
end
default:
Command <= C_NOP;
endcase
end
endtask
//---------------------------------
//---------------------------------
//一次突发写操作任务,线性序列机方法
localparam
wr_ACT_TIME = 1'b1, //激活行时刻
wr_WRITE_TIME = SC_RCD+1, //写命令时刻
wr_PRE_TIME = SC_RCD+SC_BL+WR_PRE+1, //预充电时刻
wr_END_TIME = SC_RCD+SC_BL+WR_PRE+REF_PRE;//写操作结束时刻
//一次突发写操作过程时间计数器
always@(posedge Clk or negedge Rst_n)
begin
if(!Rst_n)
wr_cnt <= 16'd0;
else if(wr_cnt == wr_END_TIME)
wr_cnt <= 16'd0;
else if(wr_req||wr_cnt>1'b0)
wr_cnt <= wr_cnt + 16'd1;
else
wr_cnt <= 16'd0;
end
//一次写操作过程完成标志位
always@(posedge Clk or negedge Rst_n)
begin
if(!Rst_n)
wr_opt_done <= 1'b0;
else if(wr_cnt == wr_END_TIME)
wr_opt_done <= 1'b1;
else
wr_opt_done <= 1'b0;
end
//一次突发写操作过程状态标识信号
reg wr_opt;
always@(posedge Clk or negedge Rst_n)
begin
if(!Rst_n)
wr_opt <= 1'b0;
else if(wr_req == 1'b1)
wr_opt <= 1'b1;
else if(wr_opt_done == 1'b1)
wr_opt <= 1'b0;
else
wr_opt <= wr_opt;
end
//写数据操作,数据写入(改变)时刻有效区间
always@(posedge Clk or negedge Rst_n)
begin
if(!Rst_n)
Wr_data_vaild <= 1'b0;
else if((wr_cnt > SC_RCD)&&(wr_cnt <= SC_RCD+SC_BL))
Wr_data_vaild <= 1'b1;
else
Wr_data_vaild <= 1'b0;
end
//一次突发写操作数据写完成标志位
assign Wdata_done = (wr_cnt == SC_RCD+SC_BL+1)?1'b1:1'b0;
//一次突发写操作任务,类似线性序列机方法
task write_data;
begin
case(wr_cnt)
wr_ACT_TIME:begin
Command <= C_ACT;
Sa <= raddr_r; //激活行
Ba <= baddr_r;
end
wr_WRITE_TIME:begin
Command <= C_WR;
Sa <= {1'b0,caddr_r[8:0]}; //激活列
Ba <= baddr_r;
end
wr_PRE_TIME:begin
Command <= C_PRE; //预充电
Sa[10] <= 1'b1;
end
wr_END_TIME:begin
Command <= C_NOP;
FF <= 1'b1;
end
default:
Command <= C_NOP;
endcase
end
endtask
//---------------------------------
//---------------------------------
//一次突发读操作任务,线性序列机方法
localparam
rd_ACT_TIME = 1'b1, //激活行时刻
rd_READ_TIME = SC_RCD+1, //读命令时刻
rd_PRE_TIME = SC_RCD+SC_BL+1, //预充电时刻
rd_END_TIME = SC_RCD+SC_CL+SC_BL;//读操作结束时刻
//一次突发读操作过程时间计数器
always@(posedge Clk or negedge Rst_n)
begin
if(!Rst_n)
rd_cnt <= 16'd0;
else if(rd_cnt == rd_END_TIME)
rd_cnt <= 16'd0;
else if(rd_req ||rd_cnt>1'b0)
rd_cnt <= rd_cnt + 16'd1;
else
rd_cnt <= 16'd0;
end
//一次突发读操作过程完成标志位
always@(posedge Clk or negedge Rst_n)
begin
if(!Rst_n)
rd_opt_done <= 1'b0;
else if(rd_cnt == rd_END_TIME)
rd_opt_done <= 1'b1;
else
rd_opt_done <= 1'b0;
end
//一次突发读操作过程状态标识信号
reg rd_opt;
always@(posedge Clk or negedge Rst_n)
begin
if(!Rst_n)
rd_opt <= 1'b0;
else if(rd_req == 1'b1)
rd_opt <= 1'b1;
else if(rd_opt_done == 1'b1)
rd_opt <= 1'b0;
else
rd_opt <= rd_opt;
end
//一次突发读操作过程中数据读完标志位
assign Rdata_done = (rd_cnt == rd_END_TIME)?1'b1:1'b0;
//读数据操作,数据有效区
always@(posedge Clk or negedge Rst_n)
begin
if(!Rst_n)
Rd_data_vaild <= 1'b0;
else if((rd_cnt > SC_RCD+SC_CL)
&&(rd_cnt <= SC_RCD+SC_CL+SC_BL))
Rd_data_vaild <= 1'b1;
else
Rd_data_vaild <= 1'b0;
end
//读数据
assign Rd_data = Dq;
//一次突发读操作任务,类似线性序列机方法
task read_data;
begin
case(rd_cnt)
rd_ACT_TIME:begin //激活命令
Command <= C_ACT;
Sa <= raddr_r;
Ba <= baddr_r;
end
rd_READ_TIME:begin //读命令
Command <= C_RD;
Sa <= {1'b0,caddr_r[8:0]};
Ba <= baddr_r;
end
rd_PRE_TIME:begin
Command <= C_PRE; //预充电
Sa[10] <= 1'b1;
end
rd_END_TIME:begin
FF <= 1'b1;
Command <= C_NOP;
end
default:
Command <= C_NOP;
endcase
end
endtask
//---------------------------------
//---------------------------------
//写操作过程刷新到记住刷新信号ref_break_wr
assign ref_break_wr = (ref_time_flag && wr_opt)?1'b1:
((!wr_opt)?1'b0:ref_break_wr);
//读操作过程刷新到记住刷新信号ref_break_rd
assign ref_break_rd = (ref_time_flag&&rd_opt)?1'b1:
((!rd_opt)?1'b0:ref_break_rd);
//刷新过程外部写使能到记住写使能信号wr_break_ref
assign wr_break_ref = ((Wr && ref_opt)?1'b1:
((!ref_opt)?1'b0:wr_break_ref));
//刷新过程外部读使能到记住读使能信号rd_break_ref信号
assign rd_break_ref = ((Rd && ref_opt)?1'b1:
((!ref_opt)?1'b0:rd_break_ref));
//---------------------------------
//---------------------------------
//刷新请求信号
always@(*)
begin
case(main_state)
AREF:begin
if(ref_time_flag)
ref_req = 1'b1;
else
ref_req = 1'b0;
end
WRITE:begin
if(ref_break_wr && wr_opt_done)
ref_req = 1'b1;
else
ref_req = 1'b0;
end
READ:begin
if(ref_break_rd && rd_opt_done)
ref_req = 1'b1;
else
ref_req = 1'b0;
end
default:
ref_req = 1'b0;
endcase
end
//---------------------------------
//---------------------------------
//写操作请求信号
always@(*)
begin
case(main_state)
AREF:begin
if((!wr_break_ref)&& Wr &&!ref_time_flag)
wr_req = 1'b1;
else if(wr_break_ref && ref_opt_done)
wr_req = 1'b1;
else
wr_req = 1'b0;
end
WRITE:begin
if(wr_opt_done && Wr && !ref_break_wr)
wr_req = 1'b1;
else
wr_req = 1'b0;
end
READ:begin
if(rd_opt_done && Wr && !ref_break_rd)
wr_req = 1'b1;
else
wr_req = 1'b0;
end
default:
wr_req = 1'b0;
endcase
end
//---------------------------------
//---------------------------------
//读操作请求信号
always@(*)
begin
case(main_state)
AREF:begin
if((!rd_break_ref)&&(!wr_break_ref)&&
(!ref_time_flag)&& !Wr && Rd )
rd_req = 1'b1;
else if(ref_opt_done &&!wr_break_ref&&
rd_break_ref)
rd_req = 1'b1;
else
rd_req = 1'b0;
end
WRITE:begin
if(wr_opt_done &&(!ref_break_wr)&&
!Wr && Rd)
rd_req = 1'b1;
else
rd_req = 1'b0;
end
READ:begin
if(rd_opt_done &&(!ref_break_rd)&&
!Wr && Rd)
rd_req = 1'b1;
else
rd_req = 1'b0;
end
default:
rd_req = 1'b0;
endcase
end
//---------------------------------
endmodule
`timescale 1ns/1ns
`define CLK100_PERIOD 10
module sdram_control_tb;
`include "../src/Sdram_Params.h"
reg Clk;
reg Rst_n;
reg Wr;
reg Rd;
reg [`ASIZE-1:0] Caddr;
reg [`ASIZE-1:0] Raddr;
reg [`BSIZE-1:0] Baddr;
reg [`DSIZE-1:0] Wr_data;
wire[`DSIZE-1:0] Rd_data;
wire Wr_data_vaild;
wire Rd_data_vaild;
wire sdram_clk;
wire sdram_cke;
wire sdram_cs_n;
wire sdram_ras_n;
wire sdram_cas_n;
wire sdram_we_n;
wire [`BSIZE-1:0] sdram_bank;
wire [`ASIZE-1:0] sdram_addr;
wire [`DSIZE-1:0] sdram_dq;
wire [`DSIZE/8-1:0]sdram_dqm;
assign sdram_clk = ~Clk;
wire Rdata_done;
//SDRAM控制器模块例化
sdram_control sdram_control(
.Clk(Clk),
.Rst_n(Rst_n),
.Wr(Wr),
.Rd(Rd),
.Caddr(Caddr),
.Raddr(Raddr),
.Baddr(Baddr),
.Wr_data(Wr_data),
.Rd_data(Rd_data),
.Rd_data_vaild(Rd_data_vaild),
.Wr_data_vaild(Wr_data_vaild),
.Wdata_done(),
.Rdata_done(Rdata_done),
.Sa(sdram_addr),
.Ba(sdram_bank),
.Cs_n(sdram_cs_n),
.Cke(sdram_cke),
.Ras_n(sdram_ras_n),
.Cas_n(sdram_cas_n),
.We_n(sdram_we_n),
.Dq(sdram_dq),
.Dqm(sdram_dqm)
);
//SDRAM模型例化
sdr sdram_model(
.Dq(sdram_dq),
.Addr(sdram_addr),
.Ba(sdram_bank),
.Clk(sdram_clk),
.Cke(sdram_cke),
.Cs_n(sdram_cs_n),
.Ras_n(sdram_ras_n),
.Cas_n(sdram_cas_n),
.We_n(sdram_we_n),
.Dqm(sdram_dqm)
);
initial
begin
$dumpfile("sdram_control_tb.vcd"); //vcd文件名
$dumpvars(0,sdram_control_tb); //test为测试module
end
initial Clk = 1'b1;
always #(`CLK100_PERIOD/2) Clk = ~Clk;
initial
begin
Rst_n = 0;
Wr = 0;
Rd = 0;
Caddr = 0;
Raddr = 0;
Baddr = 0;
Wr_data = 0;
#(`CLK100_PERIOD*200+1);
Rst_n = 1;
@(posedge sdram_control.sdram_init.Init_done)
#2000;
repeat(100) //写入100组数据
begin
Wr = 1;
Baddr = 2;
#`CLK100_PERIOD;
Wr = 0;
if(Caddr == 512-SC_BL)begin
Caddr = 0;
Raddr = Raddr + 1; //1行写满,行加1
end
else
Caddr = Caddr + SC_BL;
#5000; //延时5us
end
Caddr = 0;
Raddr = 0;
#5000;
repeat(100) //读出100组数据
begin
Rd = 1'b1;
#`CLK100_PERIOD;
Rd = 1'b0;
if(Caddr == 512-SC_BL)begin
Caddr = 0;
Raddr = Raddr + 1; //1行读完,行加1
end
else
Caddr = Caddr + SC_BL;
#5000; //延时5us
end
#5000;
$stop;
end
initial
begin
forever begin
@(posedge Wr_data_vaild);
repeat(SC_BL) //改变待写入的数据
begin
#`CLK100_PERIOD;
Wr_data = Wr_data + 1;
end
end
end
endmodule
`timescale 1ns/1ns
`define CLK100_PERIOD 10
module sdram_control_tb;
`include "../src/Sdram_Params.h"
reg Clk;
reg Rst_n;
reg Wr;
reg Rd;
reg [`ASIZE-1:0] Caddr;
reg [`ASIZE-1:0] Raddr;
reg [`BSIZE-1:0] Baddr;
reg [`DSIZE-1:0] Wr_data;
wire[`DSIZE-1:0] Rd_data;
wire Wr_data_vaild;
wire Rd_data_vaild;
wire sdram_clk;
wire sdram_cke;
wire sdram_cs_n;
wire sdram_ras_n;
wire sdram_cas_n;
wire sdram_we_n;
wire [`BSIZE-1:0] sdram_bank;
wire [`ASIZE-1:0] sdram_addr;
wire [`DSIZE-1:0] sdram_dq;
wire [`DSIZE/8-1:0]sdram_dqm;
assign sdram_clk = ~Clk;
wire Rdata_done;
//SDRAM控制器模块例化
sdram_control sdram_control(
.Clk(Clk),
.Rst_n(Rst_n),
.Wr(Wr),
.Rd(Rd),
.Caddr(Caddr),
.Raddr(Raddr),
.Baddr(Baddr),
.Wr_data(Wr_data),
.Rd_data(Rd_data),
.Rd_data_vaild(Rd_data_vaild),
.Wr_data_vaild(Wr_data_vaild),
.Wdata_done(),
.Rdata_done(Rdata_done),
.Sa(sdram_addr),
.Ba(sdram_bank),
.Cs_n(sdram_cs_n),
.Cke(sdram_cke),
.Ras_n(sdram_ras_n),
.Cas_n(sdram_cas_n),
.We_n(sdram_we_n),
.Dq(sdram_dq),
.Dqm(sdram_dqm)
);
//SDRAM模型例化
sdr sdram_model(
.Dq(sdram_dq),
.Addr(sdram_addr),
.Ba(sdram_bank),
.Clk(sdram_clk),
.Cke(sdram_cke),
.Cs_n(sdram_cs_n),
.Ras_n(sdram_ras_n),
.Cas_n(sdram_cas_n),
.We_n(sdram_we_n),
.Dqm(sdram_dqm)
);
initial
begin
$dumpfile("sdram_control_tb.vcd"); //vcd文件名
$dumpvars(0,sdram_control_tb); //test为测试module
end
initial Clk = 1'b1;
always #(`CLK100_PERIOD/2) Clk = ~Clk;
initial
begin
Rst_n = 0;
Wr = 0;
Rd = 0;
Caddr = 0;
Raddr = 0;
Baddr = 0;
Wr_data = 0;
#(`CLK100_PERIOD*200+1);
Rst_n = 1;
@(posedge sdram_control.sdram_init.Init_done)
#2000;
repeat(100) //写入100组数据
begin
Wr = 1;
Baddr = 2;
#`CLK100_PERIOD;
Wr = 0;
if(Caddr == 512-SC_BL)begin
Caddr = 0;
Raddr = Raddr + 1; //1行写满,行加1
end
else
Caddr = Caddr + SC_BL;
#5000; //延时5us
end
Caddr = 0;
Raddr = 0;
#5000;
repeat(100) //读出100组数据
begin
Rd = 1'b1;
#`CLK100_PERIOD;
Rd = 1'b0;
if(Caddr == 512-SC_BL)begin
Caddr = 0;
Raddr = Raddr + 1; //1行读完,行加1
end
else
Caddr = Caddr + SC_BL;
#5000; //延时5us
end
#5000;
$stop;
end
initial
begin
forever begin
@(posedge Wr_data_vaild);
repeat(SC_BL) //改变待写入的数据
begin
#`CLK100_PERIOD;
Wr_data = Wr_data + 1;
end
end
end
endmodule