上一篇文章,实现了网络的输入,这次继续完成网络的训练,网络采用VGG16的结构。其中为了方便,keep_prob无论是训练还是测试,都这成了1,大家应该根据需要feed进不同的值。网络的输入TFRecord.createBatch(),为上一篇文章中产生数据的方法。
import tensorflow as tf
import numpy as np
import TFRecord
#定义网络参数
learning_rate = 0.001
display_step = 5
epochs = 10
keep_prob = 0.5
#定义卷积操作
def conv_op(input_op, name, kh, kw, n_out, dh, dw):
input_op = tf.convert_to_tensor(input_op)
n_in = input_op.get_shape()[-1].value
with tf.name_scope(name) as scope:
kernel = tf.get_variable(scope+"w",
shape = [kh, kw, n_in, n_out],
dtype = tf.float32,
initializer = tf.contrib.layers.xavier_initializer_conv2d())
conv = tf.nn.conv2d(input_op, kernel, (1, dh, dw, 1), padding = 'SAME')
bias_init_val = tf.constant(0.0, shape = [n_out], dtype = tf.float32)
biases = tf.Variable(bias_init_val, trainable = True, name = 'b')
z = tf.nn.bias_add(conv, biases)
activation = tf.nn.relu(z, name = scope)
return activation
#定义全连接操作
def fc_op(input_op, name, n_out):
n_in = input_op.get_shape()[-1].value
with tf.name_scope(name) as scope:
kernel = tf.get_variable(scope+'w',
shape = [n_in, n_out],
dtype = tf.float32,
initializer = tf.contrib.layers.xavier_initializer())
biases = tf.Variable(tf.constant(0.1, shape = [n_out], dtype = tf.float32), name = 'b')
# tf.nn.relu_layer对输入变量input_op与kernel做矩阵乘法加上bias,再做RELU非线性变换得到activation
activation = tf.nn.relu_layer(input_op, kernel, biases, name = scope)
return activation
#定义池化层
def mpool_op(input_op, name, kh, kw, dh, dw):
return tf.nn.max_pool(input_op,
ksize = [1, kh, kw, 1],
strides = [1, dh, dw, 1],
padding = 'SAME',
name = name)
def inference_op(input_op, keep_prob):
# block 1 -- outputs 112x112x64
conv1_1 = conv_op(input_op, name="conv1_1", kh=3, kw=3, n_out=64, dh=1, dw=1)
conv1_2 = conv_op(conv1_1, name="conv1_2", kh=3, kw=3, n_out=64, dh=1, dw=1)
pool1 = mpool_op(conv1_2, name="pool1", kh=2, kw=2, dw=2, dh=2)
# block 2 -- outputs 56x56x128
conv2_1 = conv_op(pool1, name="conv2_1", kh=3, kw=3, n_out=128, dh=1, dw=1)
conv2_2 = conv_op(conv2_1, name="conv2_2", kh=3, kw=3, n_out=128, dh=1, dw=1)
pool2 = mpool_op(conv2_2, name="pool2", kh=2, kw=2, dh=2, dw=2)
# # block 3 -- outputs 28x28x256
conv3_1 = conv_op(pool2, name="conv3_1", kh=3, kw=3, n_out=256, dh=1, dw=1)
conv3_2 = conv_op(conv3_1, name="conv3_2", kh=3, kw=3, n_out=256, dh=1, dw=1)
conv3_3 = conv_op(conv3_2, name="conv3_3", kh=3, kw=3, n_out=256, dh=1, dw=1)
pool3 = mpool_op(conv3_3, name="pool3", kh=2, kw=2, dh=2, dw=2)
# block 4 -- outputs 14x14x512
conv4_1 = conv_op(pool3, name="conv4_1", kh=3, kw=3, n_out=512, dh=1, dw=1)
conv4_2 = conv_op(conv4_1, name="conv4_2", kh=3, kw=3, n_out=512, dh=1, dw=1)
conv4_3 = conv_op(conv4_2, name="conv4_3", kh=3, kw=3, n_out=512, dh=1, dw=1)
pool4 = mpool_op(conv4_3, name="pool4", kh=2, kw=2, dh=2, dw=2)
# block 5 -- outputs 7x7x512
conv5_1 = conv_op(pool4, name="conv5_1", kh=3, kw=3, n_out=512, dh=1, dw=1)
conv5_2 = conv_op(conv5_1, name="conv5_2", kh=3, kw=3, n_out=512, dh=1, dw=1)
conv5_3 = conv_op(conv5_2, name="conv5_3", kh=3, kw=3, n_out=512, dh=1, dw=1)
pool5 = mpool_op(conv5_3, name="pool5", kh=2, kw=2, dw=2, dh=2)
# flatten
shp = pool5.get_shape()
flattened_shape = shp[1].value * shp[2].value * shp[3].value
resh1 = tf.reshape(pool5, [-1, flattened_shape], name="resh1")
# fully connected
fc6 = fc_op(resh1, name="fc6", n_out=4096)
fc6_drop = tf.nn.dropout(fc6, keep_prob, name="fc6_drop")
fc7 = fc_op(fc6_drop, name="fc7", n_out=4096)
fc7_drop = tf.nn.dropout(fc7, keep_prob, name="fc7_drop")
logits = fc_op(fc7_drop, name="fc8", n_out=2)
return logits
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels))
optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost)
correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(labels,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
return optimizer, cost, accuracy
if __name__ == "__main__":
train_filename = "/home/wc/DataSet/traffic/testTFRecord/train.tfrecords"
test_filename = "/home/wc/DataSet/traffic/testTFRecord/test.tfrecords"
image_batch, label_batch = TFRecord.createBatch(filename = train_filename, batchsize=2)
test_image, test_label = TFRecord.createBatch(filename = test_filename, batchsize=20)
pred = inference_op(input_op = image_batch, keep_prob = keep_prob)
test_pred = inference_op(input_op = test_image, keep_prob = keep_prob)
optimizer, cost, accuracy = train(logits = pred, labels = label_batch)
test_optimizer, test_cost, test_acc = train(logits = test_pred, labels = test_label)
initop = tf.group(tf.global_variables_initializer(),tf.local_variables_initializer())
with tf.Session() as sess:
sess.run(initop)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess = sess, coord = coord)
step = 0
while step < epochs:
step += 1
print step
_, loss, acc = sess.run([optimizer,cost,accuracy])
if step % display_step ==0:
print loss,acc
print "training finish!"
_, testLoss, testAcc = sess.run([test_optimizer,test_cost,test_acc])
print "Test acc = "+ str(testAcc)
print "Test Finish!"
其中的一些参数,都是随便设置的,我们的目的仅仅是将网络结构搭好,把数据feed进网络,将网络训练起来,其中epochs参数,是通过 总样本数 20 / batch_size 2 计算得来的,因为上篇文章中,读取tfrecord数据的方法中,创建了一个文件队列,
filename_queue = tf.train.string_input_producer([filename], shuffle=False,num_epochs = 1)
这里的num_epochs = 1,使得数据只能被读取一个周期,如果不设置,则可以重复读取。