在进行机器学习实验之前,需要准备训练测试学习所需要的图像数据,如果将图像数据打包以及读取呢?
图像数据打包,早TensorFlow中有一个常用的函数tf.python_io.TFRecordWriter(save_file)将tf.train.Example读取到的数据存放在.tfrecords(train.tfrecords)文件中,将图像存储成二进制格式。
def Save_data(filename='..\\imgout',save_file="train.tfrecords",img_size=(224,224)):
"""
将文件夹下的图像数据存储在.tfrecords文件中,通过调用TensorFlow中的train.Example实现
:param filename: 文件地址
:param save_file: 保存的文件地址(文件名)
:return: None
"""
writer = tf.python_io.TFRecordWriter(save_file)
for index in os.listdir(filename):
print("Label",index)
class_path = filename +"\\"+ index+"\\"
for img_name in os.listdir(class_path):
img_path = class_path + img_name
img = Image.open(img_path)
img = img.resize(img_size)
img = img.tobytes() #将图片转化为原生bytes
example = tf.train.Example(features=tf.train.Features(feature={
"label": tf.train.Feature(int64_list=tf.train.Int64List(value=[int(index)])),
'img': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img]))}))
writer.write(example.SerializeToString())
writer.close()
对.tfrecords文件进行读取,直接读取打印出来的是二进制格式的。
for serialized_example in tf.python_io.tf_record_iterator(filename):
example = tf.train.Example()
example.ParseFromString(serialized_example)
img = example.features.feature['img'].bytes_list.value
label = example.features.feature['label'].int64_list.value
return img,label
如果样读取成TensorFlow在搭建好神经网络模型中该如何读取呢?调用MNIST、CIFAR等数据集测试学习的话有固定的调用函数,但是如果是自己的图像测试训练数据呢?
def read_and_decode(filename):
"""参考博客https://blog.csdn.net/u012759136/article/details/52232266"""
filename_queue = tf.train.string_input_producer([filename])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(serialized_example,features={
'label': tf.FixedLenFeature([], tf.int64),
'img' : tf.FixedLenFeature([], tf.string),})
img = tf.decode_raw(features['img'], tf.uint8)
img = tf.reshape(img, [224, 224, 3])
img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
label = tf.cast(features['label'], tf.int32)
return img, label
if __name__=="__main__":
# Save_data(filename)#保存数据
img, label = read_and_decode("train.tfrecords")#读取数据
img_batch, label_batch = tf.train.shuffle_batch([img, label],batch_size=30, capacity=200,min_after_dequeue=100)
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
threads = tf.train.start_queue_runners(sess=sess)
for i in range(3):
val, l= sess.run([img_batch, label_batch])
print(val.shape , l)
这种方法调用参考的是https://blog.csdn.net/u012759136/article/details/52232266中的,可以使用。但是随着TensorFlow版本的更新,在使用中会显示一些红色的,“已弃用,将在以后的版本中删除”
WARNING:tensorflow:From G:/python/TensorFlowData/2.py:82: string_input_producer (from tensorflow.python.training.input) is deprecated and will be removed in a future version.
Instructions for updating:
Queue-based input pipelines have been replaced by `tf.data`. Use `tf.data.Dataset.from_tensor_slices(string_tensor).shuffle(tf.shape(input_tensor, out_type=tf.int64)[0]).repeat(num_epochs)`. If `shuffle=False`, omit the `.shuffle(...)`.
WARNING:tensorflow:From E:\python\python3\lib\site-packages\tensorflow\python\training\input.py:276: input_producer (from tensorflow.python.training.input) is deprecated and will be removed in a future version.
Instructions for updating:
Queue-based input pipelines have been replaced by `tf.data`. Use `tf.data.Dataset.from_tensor_slices(input_tensor).shuffle(tf.shape(input_tensor, out_type=tf.int64)[0]).repeat(num_epochs)`. If `shuffle=False`, omit the `.shuffle(...)`.
WARNING:tensorflow:From E:\python\python3\lib\site-packages\tensorflow\python\training\input.py:188: limit_epochs (from tensorflow.python.training.input) is deprecated and will be removed in a future version.
Instructions for updating:
Queue-based input pipelines have been replaced by `tf.data`. Use `tf.data.Dataset.from_tensors(tensor).repeat(num_epochs)`.
WARNING:tensorflow:From E:\python\python3\lib\site-packages\tensorflow\python\training\input.py:197: QueueRunner.__init__ (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the `tf.data` module.
WARNING:tensorflow:From E:\python\python3\lib\site-packages\tensorflow\python\training\input.py:197: add_queue_runner (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the `tf.data` module.
WARNING:tensorflow:From G:/python/TensorFlowData/2.py:83: TFRecordReader.__init__ (from tensorflow.python.ops.io_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Queue-based input pipelines have been replaced by `tf.data`. Use `tf.data.TFRecordDataset`.
WARNING:tensorflow:From G:/python/TensorFlowData/2.py:106: shuffle_batch (from tensorflow.python.training.input) is deprecated and will be removed in a future version.
Instructions for updating:
Queue-based input pipelines have been replaced by `tf.data`. Use `tf.data.Dataset.shuffle(min_after_dequeue).batch(batch_size)`.
WARNING:tensorflow:From E:\python\python3\lib\site-packages\tensorflow\python\util\tf_should_use.py:189: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
Instructions for updating:
Use `tf.global_variables_initializer` instead.
2018-11-26 21:12:09.077078: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
WARNING:tensorflow:From G:/python/TensorFlowData/2.py:110: start_queue_runners (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the `tf.data` module.
(30, 224, 224, 3) [1 2 1 1 2 2 1 2 1 2 2 2 2 1 1 2 2 1 1 2 2 2 1 2 3 1 1 2 2 1]
(30, 224, 224, 3) [2 1 1 3 3 1 2 2 1 2 2 1 2 3 2 2 3 1 1 2 1 1 2 1 1 3 2 1 3 1]
2018-11-26 21:12:09.271089: W tensorflow/core/kernels/queue_base.cc:277] _0_input_producer: Skipping cancelled enqueue attempt with queue not closed
ERROR:tensorflow:Exception in QueueRunner: Enqueue operation was cancelled
[[{{node input_producer/input_producer_EnqueueMany}} = QueueEnqueueManyV2[Tcomponents=[DT_STRING], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](input_producer, input_producer/Const, ^input_producer/Assert/Assert)]]
(30, 224, 224, 3) [3 1 2 2 2 1 1 1 2 2 3 2 3 3 3 3 2 3 3 3 3 1 3 1 1 3 2 2 1 3]
根据提示,重新查找更改成相应版本的最新方法,有数据,但是在打印图像和形状的时候出错提示。
tensorflow.python.framework.errors_impl.InvalidArgumentError: Input to reshape is a tensor with 37632 values, but the requested shape has 150528
[[{{node Reshape}} = Reshape[T=DT_FLOAT, Tshape=DT_INT32](DecodeRaw, Reshape/shape)]]
[[node IteratorGetNext (defined at G:/python/TensorFlowData/2.py:69) = IteratorGetNext[output_shapes=[[?,203,203,3], [?]], output_types=[DT_FLOAT, DT_INT64], _device="/job:localhost/replica:0/task:0/device:CPU:0"](OneShotIterator)]]
查看了博客tf.data.dataset的相关知识,https://blog.csdn.net/neu_chenguangq/article/details/79590537
发现原来在参数类型定义错误了,tf.float32,改变成tf.uint8后就行了。
def Read_data(filename="train.tfrecords",shape=[224,224,3]):
"""
二进制读取从文件中读取图像数据
:param filename: 文件名
:param choose: 读取模式选择
:return: image,label:返回二进制数据和图像标签
"""
def parser(record):
features = tf.parse_single_example(record, features={
'label': tf.FixedLenFeature([], tf.int64),
'img': tf.FixedLenFeature([], tf.string), })
img = tf.decode_raw(features["img"], tf.uint8)#注意在这里只能是tf.uint8,tf.float32会报错
img = tf.reshape(img, shape)
# 归一化,转换到0-1之间
# img = tf.cast(img, tf.float32) * (1. / 255.) - 0.5
img = tf.div(tf.to_float(img), 255.0)
label = tf.cast(features["label"], tf.int64)
return img,label
# if choose==1:
dataset=tf.data.TFRecordDataset(filename)
dataset = dataset.map(parser)
dataset=dataset.repeat()
dataset=dataset.batch(1)#步长
dataset=dataset.shuffle(buffer_size=1)#batch(1)获取一张图像每次,buffer size=1,数据集不打乱;如果shuffle 的buffer size=数据集样本数量,随机打乱整个数据集
iterator = dataset.make_one_shot_iterator()
imglabelout = iterator.get_next()
return imglabelout
if __name__ == '__main__':
datasetimg=Read_data()
sess = tf.Session()
for i in range(10):
img, label = sess.run(datasetimg)
print(img.shape, label)
print()
sess.close()
直接载入的图像在特征形态上过于单一,可以通过tf.image中的相关餐宿对图像进行增强,平移、旋转、翻转、裁剪、缩放、噪声扰动、亮度以及对比度等。
在图像增强之前,如果图像数据只有10张,如何批量变成100张呢,当然可以直接在文件夹下赋值粘贴,再更改成相应的名字,在TensorFlow中,可以这样实现,图像的地址根据自己需要更改。
with tf.Session() as sess:
filename=['31.jpg','32.jpg','33.jpg']
filename_queue=tf.train.string_input_producer(filename,shuffle=False,num_epochs=20)
reader=tf.WholeFileReader()
key,value=reader.read(filename_queue)
tf.local_variables_initializer().run()
threads=tf.train.start_queue_runners(sess=sess)
i=0
while True:
i+=1
img_data=sess.run(value)
with open('img\\3\\test_%d.jpg'%i,'wb') as f:
f.write(img_data)
图像增强:
def enhance_img(img, width, height):
"""图像增强"""
img = tf.cast(img, tf.float32) # 改变图像的类型,float32
distorted_img = tf.random_crop(img, [width, height, 3]) # 将图像随机从剪切按照原图像的尺寸除以1.1后的大小进行剪切
distorted_img = tf.image.random_flip_left_right(distorted_img) # 将图像有50%的概率水平左右随机翻转,有50%的概率保持不变
distorted_img = tf.image.random_flip_up_down(distorted_img) # 将图像有50%的概率水平上下随机翻转,有50%的概率保持不变
distorted_img = tf.image.random_brightness(distorted_img, max_delta=63) # 随机改变图像的亮度
distorted_img = tf.image.random_contrast(distorted_img, lower=0.2, upper=1.8) # 随机改变对比度
distorted_img = tf.image.per_image_standardization(distorted_img) #图像标准化
return distorted_img
批量复制后的图像数据保存在本地,可以通过os来寻找文件夹中的文件,然后通过cv2或者Image来读取图像并进行相关操作。
def save_enhance_img(filein,fileout):
"""
:param filein: #输入图像的文件目录
:param fileout: #图像处理后的文件目录
:return:
"""
files = os.listdir(filein) # 将文件夹中
for filename in files:
file1 = filein + filename + '\\'
# os.chdir(file1)
file1s = os.listdir(file1)
for filename1 in file1s:
filename_out = file1 + filename1
img = cv2.imread(filename_out)
w, h = img.shape[:2]
img = tf.convert_to_tensor(img)
img = enhance_img(img, int(w / 1.1), int(h / 1.1))
imgout = img.eval()
outfile = fileout + filename + '\\' + filename1
cv2.imwrite(outfile, imgout)
print("OK!")
Python TensorFlow数据存储读取所有程序:
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import os
import tensorflow as tf
from PIL import Image
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
filename='..\\imgout'#图像数据文件夹,在同一个大型目录下的两个不同小目录里面,不同目录需要更改“..\\”
def Save_data(filename='..\\imgout',save_file="train.tfrecords",img_size=(224,224)):
"""
将文件夹下的图像数据存储在.tfrecords文件中,通过调用TensorFlow中的train.Example实现
:param filename: 文件地址
:param save_file: 保存的文件地址(文件名)
:return: None
"""
writer = tf.python_io.TFRecordWriter(save_file)
for index in os.listdir(filename):
print("Label",index)
class_path = filename +"\\"+ index+"\\"
for img_name in os.listdir(class_path):
img_path = class_path + img_name
img = Image.open(img_path)
img = img.resize(img_size)
img = img.tobytes() #将图片转化为原生bytes
example = tf.train.Example(features=tf.train.Features(feature={
"label": tf.train.Feature(int64_list=tf.train.Int64List(value=[int(index)])),
'img': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img]))}))
writer.write(example.SerializeToString())
writer.close()
def Read_data(filename="train.tfrecords",shape=[224,224,3]):
"""
二进制读取从文件中读取图像数据
:param filename: 文件名
:param choose: 读取模式选择
:return: image,label:返回二进制数据和图像标签
"""
def parser(record):
features = tf.parse_single_example(record, features={
'label': tf.FixedLenFeature([], tf.int64),
'img': tf.FixedLenFeature([], tf.string), })
img = tf.decode_raw(features["img"], tf.uint8)#注意在这里只能是tf.uint8,tf.float32会报错
img = tf.reshape(img, shape)
img=enhance_img(img,int(shape[0]/1.1),int(shape[1]/1.1))#图像增强
# 归一化,转换到0-1之间
# img = tf.cast(img, tf.float32) * (1. / 255.) - 0.5
img = tf.div(tf.to_float(img), 255.0)
label = tf.cast(features["label"], tf.int64)
return img,label
def enhance_img(img, width, height):
"""图像增强"""
img = tf.cast(img, tf.float32) # 改变图像的类型,float32
distorted_img = tf.random_crop(img, [width, height, 3]) # 将图像随机从剪切按照原图像的尺寸除以1.1后的大小进行剪切
distorted_img = tf.image.random_flip_left_right(distorted_img) # 将图像有50%的概率水平左右随机翻转,有50%的概率保持不变
distorted_img = tf.image.random_flip_up_down(distorted_img) # 将图像有50%的概率水平上下随机翻转,有50%的概率保持不变
distorted_img = tf.image.random_brightness(distorted_img, max_delta=63) # 随机改变图像的亮度
distorted_img = tf.image.random_contrast(distorted_img, lower=0.2, upper=1.8) # 随机改变对比度
distorted_img = tf.image.per_image_standardization(distorted_img) #图像标准化
return distorted_img
# if choose==1:
dataset=tf.data.TFRecordDataset(filename)
dataset = dataset.map(parser)
dataset=dataset.repeat()
dataset=dataset.batch(1)#步长
dataset=dataset.shuffle(buffer_size=1)#batch(1)获取一张图像每次,buffer size=1,数据集不打乱;如果shuffle 的buffer size=数据集样本数量,随机打乱整个数据集
iterator = dataset.make_one_shot_iterator()
imglabelout = iterator.get_next()
return imglabelout
# else:
# """图像二进制形式输出"""
# for serialized_example in tf.python_io.tf_record_iterator(filename):
# example = tf.train.Example()
# example.ParseFromString(serialized_example)
# img = example.features.feature['img'].bytes_list.value
# label = example.features.feature['label'].int64_list.value
# return img,label
def read_and_decode(filename):
"""参考博客https://blog.csdn.net/u012759136/article/details/52232266"""
filename_queue = tf.train.string_input_producer([filename])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(serialized_example,features={
'label': tf.FixedLenFeature([], tf.int64),
'img' : tf.FixedLenFeature([], tf.string),})
img = tf.decode_raw(features['img'], tf.uint8)
img = tf.reshape(img, [224, 224, 3])
img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
label = tf.cast(features['label'], tf.int32)
return img, label
if __name__ == '__main__':
datasetimg=Read_data()
sess = tf.Session()
for i in range(10):
img, label = sess.run(datasetimg)
print(img.shape, label)
print()
sess.close()
# if __name__=="__main__":
# # Save_data(filename)#保存数据
# img, label = read_and_decode("train.tfrecords")#读取数据
# img_batch, label_batch = tf.train.shuffle_batch([img, label],batch_size=30, capacity=200,min_after_dequeue=100)
# init = tf.initialize_all_variables()
# with tf.Session() as sess:
# sess.run(init)
# threads = tf.train.start_queue_runners(sess=sess)
# for i in range(3):
# val, l= sess.run([img_batch, label_batch])
# print(val.shape , l)
Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2问题可以通过在代码开头加入这个来解决。
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
下面是CSV格式的数据制作:https://blog.csdn.net/zx520113/article/details/84557459