- ros smach 教程——(二)
白云千载尽
自动驾驶rospythonsmach状态机
ROSSMACH中级教程一、SMACH容器1.1状态机容器1.1.1创建状态机容器首先引入状态机容器fromsmachimportStateMachine由于SMACH状态机还提供状态接口,因此必须在构造时指定其结果和用户数据交互。sm=StateMachine(outcomes=['outcome1','outcome2'],input_keys=['input1','input2'],outp
- 论文笔记-Contrastive Learning for Unpaired Image-to-Image Translation
kingsleyluoxin
计算机视觉论文笔记深度学习python计算机视觉机器学习人工智能深度学习
论文信息标题:ContrastiveLearningforUnpairedImage-to-ImageTranslation作者:TaesungPark,AlexeiA.Efros,RichardZhang,Jun-YanZhu机构:UniversityofCalifornia,Berkeley;AdobeResearch代码链接https://github.com/taesungp/contra
- 【迁移学习入门之域适应的背景、理论与方法】进一步理解迁移学习啦?
985小水博一枚呀
深度学习学习笔记迁移学习人工智能机器学习域适应
【迁移学习入门之域适应的背景、理论与方法】进一步理解迁移学习啦?【迁移学习入门之域适应的背景、理论与方法】进一步理解迁移学习啦?文章目录【迁移学习入门之域适应的背景、理论与方法】进一步理解迁移学习啦?1.背景介绍2.理论基础2.1分布差异(DomainShift)2.2迁移学习理论(TransferLearningTheory)2.3领域不变特征(Domain-invariantFeatures)
- 宝石组合 第十五届蓝桥杯大赛软件赛省赛C/C++ 大学 B 组
Geometry Fu
蓝桥杯蓝桥杯c语言c++
宝石组合题目来源第十五届蓝桥杯大赛软件赛省赛C/C++大学B组原题链接蓝桥杯宝石组合https://www.lanqiao.cn/problems/19711/learning/问题描述P10426[蓝桥杯2024省B]宝石组合题目描述在一个神秘的森林里,住着一个小精灵名叫小蓝。有一天,他偶然发现了一个隐藏在树洞里的宝藏,里面装满了闪烁着美丽光芒的宝石。这些宝石都有着不同的颜色和形状,但最引人注目
- 统计机器学习 (Statistical Machine Learning) 原理与代码实例讲解
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
统计机器学习(StatisticalMachineLearning)原理与代码实例讲解1.背景介绍统计机器学习是现代人工智能和数据科学的核心领域之一。它结合了统计学和计算机科学的理论与方法,通过数据驱动的方式来构建预测模型和决策系统。统计机器学习不仅在学术研究中占据重要地位,还在工业界有广泛应用,如推荐系统、图像识别、自然语言处理等。2.核心概念与联系2.1统计学与机器学习的关系统计学关注数据的收
- 自动驾驶中控制模块状态机的作用与设计方法
程序员龙一
自动驾驶自动驾驶状态机control
问题解答:一、车辆状态机在自动驾驶控制模块中的核心作用在自动驾驶系统中,状态机(StateMachine)是控制模块的核心逻辑框架,用于管理车辆在不同运行阶段的行为和状态切换。其核心优势体现在以下几个方面:1.系统行为的模块化与可维护性模块化分层管理:状态机将复杂的车辆行为(如启动、停车、紧急避障、车道保持等)分解为独立的状态模块。每个状态专注于单一功能(例如“车道保持”状态仅处理横向控制),降低
- AI学习第二天--监督学习 半监督学习 无监督学习
iisugar
机器学习支持向量机人工智能
目录1.监督学习(SupervisedLearning)比喻:技术细节:形象例子:2.无监督学习(UnsupervisedLearning)比喻:技术细节:形象例子:3.半监督学习(Semi-SupervisedLearning)比喻:技术细节:形象例子:4.三者的对比与选择表格总结:5.实际案例对比案例:电商平台用户分群6.关键逻辑总结1.监督学习(SupervisedLearning)比喻:老
- 注意力机制+多尺度卷积
一只小小的土拨鼠
解构前沿:文献精读深度学习python人工智能YOLO深度学习
多尺度卷积先提供丰富的特征信息,注意力机制再从中筛选出关键信息,这样结合起来,不仅可以进一步提高模型的识别精度和效率,显著提升模型性能,还可以增强模型的可解释性。MPARN:multi-scalepathattentionresidualnetworkforfaultdiagnosisofrotatingmachines方法:论文介绍了一种用于旋转机械故障诊断的多尺度卷积神经网络结构,称为多尺度路
- KVM 内核优化全攻略:全方位释放服务器性能
TechStack 创行者
KVMLinux服务器运维KVM
KVM内核优化全攻略:全方位释放服务器性能在云计算、大数据、人工智能等前沿技术蓬勃发展的当下,服务器性能面临着前所未有的挑战。KVM(Kernel-basedVirtualMachine)作为开源虚拟化解决方案,凭借高效稳定的特性,广泛应用于企业数据中心。要充分发挥KVM性能优势,对其内核进行全面优化势在必行。本文将为你详细介绍一套涵盖通用优化及其他关键优化点的完整KVM内核优化方案,并结合实际案
- 数字接龙 第十五届蓝桥杯大赛软件赛省赛C/C++ 大学 B 组
Geometry Fu
蓝桥杯蓝桥杯c语言c++
数字接龙题目来源第十五届蓝桥杯大赛软件赛省赛C/C++大学B组原题链接蓝桥杯数字接龙https://www.lanqiao.cn/problems/19712/learning/问题描述题目描述小蓝最近迷上了一款名为《数字接龙》的迷宫游戏,游戏在一个大小为n×nn\timesnn×n的格子棋盘上展开,其中每一个格子处都有着一个0⋯k−10\cdotsk-10⋯k−1之间的整数。游戏规则如下:从左上
- 如何使用MATLAB进行高效的GPU加速深度学习模型训练?
百态老人
matlab深度学习开发语言
要使用MATLAB进行高效的GPU加速深度学习模型训练,可以遵循以下步骤和策略:选择合适的GPU硬件:首先,确保您的计算机配备有支持CUDA的NVIDIAGPU,并且其计算能力至少为3.0或以上。可以通过gpuDevice命令检查GPU是否具备加速功能。安装必要的工具箱:确保安装了MATLAB的DeepLearningToolbox和ParallelComputingToolbox,这些工具箱提供
- 【sklearn 03】逻辑回归、决策树、支持向量机
@金色海岸
sklearn逻辑回归决策树
逻辑回归、决策树、支持向量机-逻辑回归logisticsregression(逻辑回归)算法是经典的分类算法,基本思想是构造一个概率的拟合函数。决策树决策树的基本思想是根据样例去推断其背后的树形知识表征支持向量机支持向量机SVM(supportvectormachine)的基本思想是寻找最大的间隔的分割超平面。离分割超平面最近的这些样本点称为支持向量机
- 嵌入式c语言进阶(三)状态机State Machine
niuTaylor
c语言开发语言
状态机(StateMachine)是一种描述系统在不同状态之间转换行为的数学模型或设计模式,广泛应用于嵌入式系统、业务流程、游戏开发等领域。以下从核心概念、实现方式、应用实战三方面进行详细解析:一、状态机核心概念四大要素现态(CurrentState):系统当前所处的状态。事件(Event):触发状态转移的条件,如用户操作、时间到期等。动作(Action):状态转移时执行的操作,例如发送通知、更新
- 【sklearn 02】监督学习、非监督下学习、强化学习
@金色海岸
sklearn学习人工智能
监督学习、非监督学习、强化学习**机器学习通常分为无监督学习、监督学习和强化学习三类。-第一类:无监督学习(unsupervisedlearning),指的是从信息出发自动寻找规律,分析数据的结构,常见的无监督学习任务有聚类、降维、密度估计、关联分析等。-第二类:监督学习(supervisedlearning),监督学习指的是使用带标签的数据去训练模型,并预测未知数据的标签。监督学习有两种,当预测
- Python第二十三课:自监督学习 | 无标注数据的觉醒
程之编
Python全栈通关秘籍python开发语言人工智能机器学习
本节目标理解自监督学习的核心范式与优势掌握对比学习(ContrastiveLearning)框架实现图像掩码自编码器(MaskedAutoencoder)开发实战项目:亿级参数模型轻量化探索数据增强的创造性艺术一、自监督学习基础(AI的拼图游戏)1.核心思想解析学习范式数据需求生活比喻监督学习海量标注数据老师逐题批改作业无监督学习纯无标签数据自学杂乱笔记自监督学习自动生成伪标签玩拼图游戏(根据碎片
- 支持向量机 (SVM) 算法详解
sssugarr
机器学习算法详解pythonsvm支持向量机算法sklearn
支持向量机(SVM)算法详解支持向量机(SupportVectorMachine,SVM)是一种监督学习模型,广泛应用于分类和回归分析。SVM特别适合高维数据,并且在处理复杂非线性数据时表现出色。本文将详细讲解SVM的原理、数学公式、应用场景及其在Python中的实现。什么是支持向量机?支持向量机的目标是找到一个最佳的决策边界(或称超平面)来最大限度地分隔不同类别的数据点。对于线性可分的数据,SV
- vscode--工作区和相对路径
一头大学牲
程序--编程记录vscodeide编辑器
vscode的相对路径使用vscode编辑python项目时发现,它的相对路径是相对于当前工作根目录来定位的,也就是从工作文件夹的最顶级目录开始查找,而非是从当前执行文件开始查找。例子:根目录:F:\deep-learning-for-image-processing执行文件路径:F:\deep-learning-for-image-processing\pytorch_classificatio
- DDA3020 Machine Learning
后端
DDA3020Homework1Duedate:March09,2025Instructions•Thedeadlineis23:59,March09,2025.•Theweightofthisassignmentinthefinalgradeis20%.•Electronicsubmission:TurninsolutionselectronicallyviaBlackboard.Besuret
- 新手村:混淆矩阵
嘉羽很烦
机器学习机器学习
新手村:混淆矩阵一、前置条件知识点要求学习资源分类模型基础理解分类任务(如二分类、多分类)和常见分类算法(如逻辑回归、决策树)。《Hands-OnMachineLearningwithScikit-Learn》Python基础熟悉变量、循环、函数、列表、字典等基本语法。《PythonCrashCourse》或在线教程(如Codecademy)scikit-learn基础掌握模型训练、预测、评估的基
- 【Linux】learning notes(4)cat、more、less、head、tail、vi、vim
bryant_meng
ServerConfig/Toolslinuxlessvimtailmore
文章目录catmore查看整个文件less查看整个文件head查看部分文件tail查看部分文件vim/vicatcat命令在Linux和Unix系统中非常常用,它用于连接文件并打印到标准输出设备(通常是屏幕)。虽然cat的基本用法很简单,但它也支持一些参数来提供额外的功能。-n或--number:对所有输出的行进行编号。示例:cat-nfile.txt这会显示file.txt的内容,并在每行的开头
- 了解状态机
Mcband
java
前言状态机(StateMachine)是一种数学模型,用于描述系统或程序在不同状态之间转换的行为。它由一组状态、转移条件和动作组成。一、什么是状态机?状态机可以被看作是一个抽象的机器,它可以处于不同的状态,并根据输入条件执行相应的动作来改变状态。状态表示了系统或程序所处的特定情况或阶段,而转移条件决定了在何种条件下从一个状态转移到另一个状态,动作则表示在状态转移时要执行的操作。二、状态机的实例一个
- 强化学习:时间差分(TD)(SARSA算法和Q-Learning算法)(看不懂算我输专栏)——手把手教你入门强化学习(六)
wxchyy
强化学习算法
目录前言前期回顾一、SARSA算法二、Q-Learning算法三、总结总结前言 前两期我们介绍了动态规划算法,还有蒙特卡洛算法,不过它们对于状态价值函数的估值都有其缺陷性,像动态规划,需要从最下面向上进行递推,而蒙特克洛则需要一个Episode(回合)结束才能对其进行估值,有没有更直接的方法,智能体能边做动作,边估值一次,不断学习策略?答案是有的。这就是本期需要介绍的算法,时间差分法(TimeDi
- 深度学习 Deep Learning 第2章 线性代数
odoo中国
AI编程人工智能深度学习线性代数人工智能
深度学习第2章线性代数线性代数是深度学习的语言。张量操作是神经网络计算的基石,矩阵乘法是前向传播的核心,范数约束模型复杂度,而生成空间理论揭示模型表达能力的本质。本章介绍线性代数的基本内容,为进一步学习深度学习做准备。主要内容2.1标量、向量、矩阵和张量标量:单个数字,用斜体表示,通常赋予小写字母变量名。向量:数字数组,按顺序排列,用粗体小写字母表示,元素通过下标访问。矩阵:二维数字数组,用粗体大
- TidyBot++:用于机器人学习开源的完整移动机械手
三谷秋水
计算机视觉智能体人工智能机器人开源人工智能机器学习深度学习
24年12月来自普林斯顿、斯坦福和dexterity.ai的论文“TidyBot++:AnOpen-SourceHolonomicMobileManipulatorforRobotLearning”。要充分利用模仿学习在移动机械操作方面的最新进展,需要收集大量人工引导的演示。本文提出一种开源设计,用于设计一种廉价、坚固、灵活的移动机械手,该机械手可支撑任意臂,从而实现各种现实世界的家用移动机械操作
- TPAMI 2024 | 学习人类教育智慧:以学生为中心的知识蒸馏方法
小白学视觉
论文解读IEEETPAMI知识蒸馏TPAMI论文解读深度学习
题目:LearningFromHumanEducationalWisdom:AStudent-CenteredKnowledgeDistillationMethod学习人类教育智慧:以学生为中心的知识蒸馏方法作者:S.Yang;J.Yang;M.Zhou;Z.Huang;W.-S.Zheng;X.Yang;J.Ren摘要现有的知识蒸馏研究通常侧重于以教师为中心的方法,其中教师网络根据自身标准进行训
- Manus开源平替-开源通用智能体
galileo2016
人工智能
原文链接:https://i68.ltd/notes/posts/250306-opensource-agi-agent/OWL-比Manus还强的全能开源AgentOWL:OptimizedWorkforceLearningforGeneralMulti-AgentAssistanceinReal-WorldTaskAutomation,现实世界中执行自动化任务的通用多代理辅助优化学习框架项目仓
- 训练模型时,步长为什么不能太大也不能太小?
yuanpan
人工智能
在训练模型时,步长(也称为学习率,LearningRate)是一个关键的超参数,它控制着每次参数更新的大小。步长既不能太大,也不能太小,原因如下:1.步长太大的问题如果步长过大,会导致以下问题:模型发散(Divergence):参数更新幅度过大,可能导致损失函数的值不断增大,甚至无法收敛,模型性能急剧下降。错过最优解:过大的步长可能导致参数在最优解附近震荡,甚至直接跳过最优解,无法找到良好的模型参
- KVM安全模块生产环境配置与优化指南
TechStack 创行者
#服务器容器Linux服务器运维安全kvmSELinux
KVM安全模块生产环境配置与优化指南一、引言在当今复杂多变的网络安全环境下,生产环境中KVM(Kernel-basedVirtualMachine)的安全配置显得尤为重要。本指南旨在详细阐述KVM安全模块的配置方法,结合强制访问控制(MAC)、硬件隔离及合规性要求,为您提供全面且深入的操作建议,确保KVM环境的安全性和稳定性。二、SELinux安全模块配置1.基础策略配置SELinux(Secur
- 数据架构与机器学习:如何构建智能系统
AI天才研究院
AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍机器学习(MachineLearning)是一种使计算机程序在未被明确编程的情况下,通过经验的学习自动改善其行为的技术。机器学习的目标是使计算机能够自主地从数据中学习,以便在未来的问题中做出更好的决策。数据架构(DataArchitecture)是一种用于有效管理、存储和处理数据的系统结构和组件。数据架构涉及到数据的收集、存储、处理和分析,以及数据的存储和传输。数据架构是构建智能系统的
- 信息检索系统评估指标的层级分析:从单点精确度到整体性能度量
人工智能深度学习llm检索系统
在构建搜索引擎系统时,有效的评估机制是保证系统质量的关键环节。当用户输入查询词如"machinelearningtutorialspython",系统返回结果列表后,如何客观评估这些结果的相关性和有效性?这正是信息检索评估指标的核心价值所在。分析用户与搜索引擎的交互模式,我们可以观察到以下行为特征:用户主要关注结果列表的前几项对顶部结果的关注度显著高于底部结果用户基于多次搜索体验形成对搜索系统整体
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟