插入排序:对于少量元素比较有效。
工作方式:像排序一手扑克牌,开始时,我们的左手为空并且桌子上的牌面向下。然后,我们每次从桌子上拿走一张牌并将它插入左手中正确的位置。为了找到一张牌的正确位置,我们从右到左将它与已在手中的每张牌进行比较,如图2-1所示。拿在左手上的牌总是排序好的,原来这些牌是桌子上牌堆中顶部的牌。
对于插入排序,我们将其伪代码过程命名为INSERTION-SORT,其中的参数是一个数组A[1..n],包含长度为n的要排序的一个序列。(在代码中,A中元素的数目n用A.length来表示。)该算法原址排序输入的数:算法在数组A中重排这些数,在任何时候,最多只有其中的常数个数字存储在数组外面。在过程INSERTION-SORT结束时,输入数组A包含排序好的输出序列。
INSERTION-SORT(A)
1 for j = 2 to A.length
2 key = A[j]
3 // Insert A[j] into the sorted sequence A[1..j - 1].
4 i = j - 1
5 while i > 0 and A[i] > key
6 A[i+1] = A[i]
7 i = i - 1
8 A[i + 1] = key
循环不变式与插入排序的正确性
图2-2表明对A=〈5,2,4,6,1,3〉该算法如何工作。下标j指出正被插入到手中的“当前牌”。在for循环(循环变量为j)的每次迭代的开始,包含元素A[1..j-1]的子数组构成了当前排序好的左手中的牌,剩余的子数组A[j+1..n]对应于仍在桌子上的牌堆。事实上,元素A[1..j-1]就是原来在位置1到j-1的元素,但现在已按序排列。我们把A[1..j-1]的这些性质形式地表示为一个循环不变式:
在第1~8行的for循环的每次迭代开始时,子数组A[1..j-1]由原来在A[1..j-1]中的元素组成,但已按序排列。
图2-2 在数组A=〈5,2,4,6,1,3〉上INSERTION-SORT的操作。数组下标出现在长方形的上方,数组位置中存储的值出现在长方形中。(a)~(e)第1~8行for循环的迭代。每次迭代中,黑色的长方形保存取自A[j]的关键字,在第5行的测试中将它与其左边的加阴影的长方形中的值进行比较。加阴影的箭头指出数组值在第6行向右移动一个位置,黑色的箭头指出在第8行关键字被移到的地方。(f)最终排序好的数组。
用js实现