[20190214]11g Query Result Cache RC Latches.txt

[20190214]11g Query Result Cache RC Latches.txt


--//昨天我重复链接http://www.pythian.com/blog/oracle-11g-query-result-cache-rc-latches/的测试,

--//按照我的理解如果sql语句密集执行,使用Result Cache反而更加糟糕,这是我以前没有注意到的。

--//联想我们生产系统也存在类似的问题,我们有1个判断连接的语句select count(*) from test_connect;

--//在业务高峰它执行可以达到1600次/秒。另外一个简单的select sysdate from dual; 也达到800次/秒。

--//而实际上业务高峰sql语句执行率3000次/秒。这样的2条语句就占了2400次/秒。我以前一直以为将表设置

--//为result cache,可能提高执行效率,还是通过例子测试看看。


1.环境:

SCOTT@book> @ ver1

PORT_STRING                    VERSION        BANNER

------------------------------ -------------- --------------------------------------------------------------------------------

x86_64/Linux 2.4.xx            11.2.0.4.0     Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production


SCOTT@book> show parameter job

NAME                TYPE    VALUE

------------------- ------- ------

job_queue_processes integer 200


SCOTT@book> select * from v$latchname where name like 'Result Cache%';

LATCH# NAME                          HASH

------ ----------------------- ----------

   436 Result Cache: RC Latch  1054203712

   437 Result Cache: SO Latch   986859868

   438 Result Cache: MB Latch   995186388

--//我看到Result Cache名字与作者的不同,命名为Result Cache: RC Latch。


SCOTT@book> select name,gets from v$latch where lower(name) like '%result cache%';

NAME                                 GETS

------------------------------ ----------

Result Cache: RC Latch                  0

Result Cache: SO Latch                  0

Result Cache: MB Latch                  0


SCOTT@book> select count(*) from v$latch_children where lower(name) like '%result cache%';

  COUNT(*)

----------

         0


--//可以注意一个细节,Result Cache没有children latch。也仅仅1个Result Cache: RC Latch 父latch。从这里也可以看出如果

--//做了result cache的表,多个用户并发执行,可能反而不能获得好的性能,可能出现大量的Result Cache: RC Latch争用的情况.


2.建立测试例子:


create table t as select rownum id from dual ;

create unique index pk_t on t(id);

--//分析略。


SCOTT@book> create table job_times ( sid   number, time_ela number);

Table created.


--//按照源链接的例子修改如下:

create or replace procedure do_work(

 p_iterations in number

) is

 l_rowid  rowid;

 v_t number;

begin

 insert into job_times

  values (sys_context('userenv', 'sid'), dbms_utility.get_time)

  returning rowid into l_rowid;


 for i in 1 .. p_iterations

 loop

     select count(*) into v_t from t;

 end loop;


 update job_times set

   time_ela=dbms_utility.get_time-time_ela

  where rowid=l_rowid;

 commit;

end;

/


3.测试:

--//首先测试不做result cache的情况:

--//alter table t result_cache (mode default);


declare

 l_job number;

begin

 for i in 1 .. 50

 loop

  dbms_job.submit(

   job => l_job,

   what => 'do_work(1000000);'

  );

 end loop;

end;

/


SCOTT@book> commit ;

Commit complete.


--//注意一定要写提交,不然dbms_job.submit要等很久才执行。


SCOTT@book> select count(*),avg(TIME_ELA),sum(TIME_ELA) from job_times ;

  COUNT(*) AVG(TIME_ELA) SUM(TIME_ELA)

---------- ------------- -------------

        50        9235.1        461755


4.测试:


--///测试做result cache的情况,为了测试的准确,我重启数据库。

SCOTT@book> delete from job_times;

50 rows deleted.


SCOTT@book> commit ;

Commit complete.


SCOTT@book> alter table t result_cache (mode force);

Table altered.


--//重启数据库.


SCOTT@book> select name, gets, misses, sleeps, wait_time from v$latch where name like 'Result Cache%';

NAME                                 GETS     MISSES     SLEEPS  WAIT_TIME

------------------------------ ---------- ---------- ---------- ----------

Result Cache: RC Latch                  0          0          0          0

Result Cache: SO Latch                  0          0          0          0

Result Cache: MB Latch                  0          0          0          0


declare

 l_job number;

begin

 for i in 1 .. 50

 loop

  dbms_job.submit(

   job => l_job,

   what => 'do_work(100000);'

  );

 end loop;

end;

/


SCOTT@book> commit ;

Commit complete.


SCOTT@book> select count(*),avg(TIME_ELA),sum(TIME_ELA) from job_times ;

  COUNT(*) AVG(TIME_ELA) SUM(TIME_ELA)

---------- ------------- -------------

        50       7135.96        356798


SCOTT@book> select name, gets, misses, sleeps, wait_time from v$latch where name like 'Result Cache%';

NAME                                 GETS     MISSES     SLEEPS  WAIT_TIME

------------------------------ ---------- ---------- ---------- ----------

Result Cache: RC Latch           54232541    3499238          0          0

Result Cache: SO Latch                202          0          0          0

Result Cache: MB Latch                  0          0          0          0


--//很明显,即使存在Result Cache: RC Latch的争用,但是WAIT_TIME=0,不过我发现这样测试的一个缺点,就是50个job并不是同时运行.

--//$ ps -ef | grep ora_[j]|wc ,看看数量是不断增加的过程.

--//而且采用Result Cache后效果还是增强的.


5.换一个方式测试:

SCOTT@book> delete from job_times;

53 rows deleted.


SCOTT@book> commit ;

Commit complete.


--//设置result_cache=default

SCOTT@book> alter table t result_cache (mode default);

Table altered.


$ seq 50 | xargs -I{} echo 'sqlplus -s -l scott/book <<< "execute do_work(1000000)" & '| bash


--//等全部完成...


SCOTT@book> select count(*),avg(TIME_ELA),sum(TIME_ELA) from job_times ;

  COUNT(*) AVG(TIME_ELA) SUM(TIME_ELA)

---------- ------------- -------------

        50      10588.26        529413


SCOTT@book> delete from job_times;

50 rows deleted.


SCOTT@book> commit ;

Commit complete.


--//设置result_cache=force

SCOTT@book> alter table t result_cache (mode force);

Table altered.


$ seq 50 | xargs -I{} echo 'sqlplus -s -l  scott/book <<< "execute do_work(1000000)" & '| bash


SCOTT@book> select count(*),avg(TIME_ELA),sum(TIME_ELA) from job_times ;

  COUNT(*) AVG(TIME_ELA) SUM(TIME_ELA)

---------- ------------- -------------

        50       8573.28        428664

--//可以看到即使这样大并发,采用result cache还是要快许多,没有遇到作者的情况.

--//可以11GR2做了一些改进,不会遇到这样的情况.


SCOTT@book> column name format a30

SCOTT@book> select name, gets, misses, sleeps, wait_time from v$latch where name like 'Result Cache%';

NAME                                 GETS     MISSES     SLEEPS  WAIT_TIME

------------------------------ ---------- ---------- ---------- ----------

Result Cache: RC Latch          103461569    7263987          0          0

Result Cache: SO Latch                302          0          0          0

Result Cache: MB Latch                  0          0          0          0


6.不过当我拿作者的最后的例子做最后的测试发现,使用result cache慢很多.


SCOTT@book> create cluster hc ( n number(*,0)) single table hashkeys 15000 size 230;

Cluster created.


SCOTT@book> create table hc_t ( n number(*,0), v varchar2(200)) cluster hc (n);

Table created.


SCOTT@book> insert into hc_t select level, dbms_random.string('p', 200) from dual connect by level <= 10000;

10000 rows created.


SCOTT@book> commit;

Commit complete.


--//分析表略.


All we need now is two procedures, one with a regular select and another with a cached select:


create or replace procedure do_hc(

 p_iterations in number

) is

 l_rowid  rowid;

 l_n number;

begin

 insert into job_times

  values (sys_context('userenv', 'sid'), dbms_utility.get_time)

  returning rowid into l_rowid;


 for i in 1 .. p_iterations

 loop

  l_n:=trunc(dbms_random.value(1, 10000));

  for cur in (select * from hc_t where n=l_n)

  loop

   null;

  end loop;

 end loop;


 update job_times set

   time_ela=dbms_utility.get_time-time_ela

  where rowid=l_rowid;

end;

/


Procedure created.


create or replace procedure do_rc(

 p_iterations in number

) is

 l_rowid  rowid;

 l_n number;

begin

 insert into job_times

  values (sys_context('userenv', 'sid'), dbms_utility.get_time)

  returning rowid into l_rowid;


 for i in 1 .. p_iterations

 loop

  l_n:=trunc(dbms_random.value(1, 10000));

  for cur in (select /*+ result_cache */ * from hc_t where n=l_n)

  loop

   null;

  end loop;

 end loop;


 update job_times set

   time_ela=dbms_utility.get_time-time_ela

  where rowid=l_rowid;

end;

/


Procedure created.


The hash cluster will go first:


SCOTT@book> delete from job_times;

4 rows deleted.


SQL> commit;

Commit complete.


declare

 l_job number;

begin

 for i in 1 .. 4

 loop

  dbms_job.submit(

   job => l_job,

   what => 'do_hc(100000);'

    );

 end loop;

end;

/


PL/SQL procedure successfully completed.


SCOTT@book> commit ;

Commit complete.



--allow jobs to complete


SCOTT@book> select case grouping(sid) when 1 then 'Total:' else to_char(sid) end sid, sum(time_ela) ela from job_times group by rollup((sid, time_ela));

SID      ELA

------- ----

41       446

54       437

80       438

94       437

Total:  1758

--//每个测试仅仅需要4秒.


Now let's see if Result Cache can beat those numbers:


SCOTT@book> delete from job_times;

4 rows deleted.


SCOTT@book> commit ;

Commit complete.


SCOTT@book> select name, gets, misses, sleeps, wait_time from v$latch where name like 'Result Cache%';

NAME                                 GETS     MISSES     SLEEPS  WAIT_TIME

------------------------------ ---------- ---------- ---------- ----------

Result Cache: RC Latch           20385043     535762          5         94

Result Cache: SO Latch                  9          0          0          0

Result Cache: MB Latch                  0          0          0          0


declare

 l_job number;

begin

 for i in 1 .. 4

 loop

  dbms_job.submit(

   job => l_job,

   what => 'do_rc(100000);'

    );

 end loop;

end;

/


PL/SQL procedure successfully completed.


SCOTT@book> commit ;

Commit complete.



--allow jobs to complete


SCOTT@book> select case grouping(sid) when 1 then 'Total:' else to_char(sid) end sid, sum(time_ela) ela from job_times group by rollup((sid, time_ela));

SID       ELA

------ ------

41       3850

54       3853

80       3860

94       3863

Total:  15426

--//我的测试使用Result Cache 更加糟糕!!每个测试需要38秒.而作者的测试两者几乎差不多.作者用 Nothing (almost) 来表达.


SCOTT@book> select name, gets, misses, sleeps, wait_time from v$latch where name like 'Result Cache%';

NAME                                 GETS     MISSES     SLEEPS  WAIT_TIME

------------------------------ ---------- ---------- ---------- ----------

Result Cache: RC Latch           21768802    1045691     663187   64314325

Result Cache: SO Latch                 17          0          0          0

Result Cache: MB Latch                  0          0          0          0


--//我开始以为这里有1个将结果集放入共享池的过程,每一次执行都需要放入共享池.再次调用应该会快一些.

create or replace procedure do_rc(

 p_iterations in number

) is

 l_rowid  rowid;

 l_n number;

begin

 insert into job_times

  values (sys_context('userenv', 'sid'), dbms_utility.get_time)

  returning rowid into l_rowid;


 for i in 1 .. p_iterations

 loop

  l_n:=trunc(dbms_random.value(1, 10000));

  for cur in (select /*+ result_cache */ * from hc_t where n=l_n)

  loop

   null;

  end loop;

 end loop;


 update job_times set

   time_ela=dbms_utility.get_time-time_ela

  where rowid=l_rowid;

end;

/


--//再次执行:

declare

 l_job number;

begin

 for i in 1 .. 4

 loop

  dbms_job.submit(

   job => l_job,

   what => 'do_rc(100000);'

    );

 end loop;

end;

/


PL/SQL procedure successfully completed.

SCOTT@book> commit ;

Commit complete.


SCOTT@book> select case grouping(sid) when 1 then 'Total:' else to_char(sid) end sid, sum(time_ela) ela from job_times group by rollup((sid, time_ela));

SID     ELA

----- -----

72     3980

81     3900

96     3936

108    3922

Total 15738


--//问题依旧.我估计不同查询存在select /*+ result_cache */ * from hc_t where n=l_n的情况下,探查Result Cache: RC Latch持有

--//时间很长,导致使用result cache更慢,这样看来result_cache更加适合统计类结果不变的语句.而且绑定变量不要变化很多的情况.


--//换成普通表测试看看:

SCOTT@book> rename  hc_t to hc_tx;

Table renamed.


SCOTT@book> create table hc_t as select * from hc_tx ;

Table created.


SCOTT@book> create unique index i_hc_t on hc_t(n);

Index created.


--//分析表略.

--//调用do_hc的情况如下:

SCOTT@book> select count(*),avg(TIME_ELA),sum(TIME_ELA) from job_times ;

  COUNT(*) AVG(TIME_ELA) SUM(TIME_ELA)

---------- ------------- -------------

         4         431.5          1726


--//调用do_rc的情况如下:

SCOTT@book> select count(*),avg(TIME_ELA),sum(TIME_ELA) from job_times ;

  COUNT(*) AVG(TIME_ELA) SUM(TIME_ELA)

---------- ------------- -------------

         4       4027.75         16111


--//结果一样.删除索引在测试看看.

SCOTT@book> drop index i_hc_t ;

Index dropped.


--//调用do_hc的情况如下:

--//delete from job_times;

--//commit ;

SCOTT@book> select count(*),avg(TIME_ELA),sum(TIME_ELA) from job_times ;

  COUNT(*) AVG(TIME_ELA) SUM(TIME_ELA)

---------- ------------- -------------

         4          4160         16640


--//调用do_rc的情况如下:

--//delete from job_times;

--//commit ;

SCOTT@book> select count(*),avg(TIME_ELA),sum(TIME_ELA) from job_times ;

  COUNT(*) AVG(TIME_ELA) SUM(TIME_ELA)

---------- ------------- -------------

         4          3828         15312


--//这个时候result cache优势才显示出来.总之在生产系统使用要注意这个细节,一般result cahe仅仅只读表(dml很少的静态表)外.

--//如果经常使用不同变量查询表,能使用索引的情况,使用result cache毫无优势可言.


来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/267265/viewspace-2632907/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/267265/viewspace-2632907/

你可能感兴趣的:([20190214]11g Query Result Cache RC Latches.txt)