图像处理之简单脸谱检测算法(Simple Face Detection Algorithm)

图像处理之简单脸谱检测算法(Simple Face Detection Algorithm)


介绍基于皮肤检测之后的,寻找最大连通区域,完成脸谱检测的算法。大致的算法步骤如下:


原图如下:


每步处理以后的效果:


程序运行,加载选择图像以后的截屏如下:


截屏中显示图片,是适当放缩以后,代码如下:

	Image scaledImage = rawImg.getScaledInstance(200, 200, Image.SCALE_FAST); // Java Image API, rawImage is source image
	g2.drawImage(scaledImage, 0, 0, 200, 200, null);

第一步:图像预处理,预处理的目的是为了减少图像中干扰像素,使得皮肤检测步骤可以得

到更好的效果,最常见的手段是调节对比度与亮度,也可以高斯模糊。关于怎么调节亮度与

对比度可以参见这里:http://blog.csdn.net/jia20003/article/details/7385160

这里调节对比度的算法很简单,源代码如下:

package com.gloomyfish.face.detection;

import java.awt.image.BufferedImage;

public class ContrastFilter extends AbstractBufferedImageOp {
	
	private double nContrast = 30;
	
	public ContrastFilter() {
		System.out.println("Contrast Filter");
	}

	@Override
	public BufferedImage filter(BufferedImage src, BufferedImage dest) {
		int width = src.getWidth();
        int height = src.getHeight();
        double contrast = (100.0 + nContrast) / 100.0;
        contrast *= contrast;
        if ( dest == null )
        	dest = createCompatibleDestImage( src, null );

        int[] inPixels = new int[width*height];
        int[] outPixels = new int[width*height];
        getRGB( src, 0, 0, width, height, inPixels );
        int index = 0;
        int ta = 0, tr = 0, tg = 0, tb = 0;
        for(int row=0; row> 24) & 0xff;
                tr = (inPixels[index] >> 16) & 0xff;
                tg = (inPixels[index] >> 8) & 0xff;
                tb = inPixels[index] & 0xff;
                
                // adjust contrast - red, green, blue
                tr = adjustContrast(tr, contrast);
                tg = adjustContrast(tg, contrast);
                tb = adjustContrast(tb, contrast);
                
                // output RGB pixel
                outPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb;
        	}
        }
        setRGB( dest, 0, 0, width, height, outPixels );
        return dest;
	}
	
	public int adjustContrast(int color, double contrast) {
		double result = 0;
        result = color / 255.0;
        result -= 0.5;
        result *= contrast;
        result += 0.5;
        result *=255.0;
        return clamp((int)result);
	}
	
	public static int clamp(int c) {
		if (c < 0)
			return 0;
		if (c > 255)
			return 255;
		return c;
	}

}

注意:第一步不是必须的,如果图像质量已经很好,可以直接跳过。


第二步:皮肤检测,采用的是基于RGB色彩空间的统计结果来判断一个像素是否为skin像

素,如果是皮肤像素,则设置像素为黑色,否则为白色。给出基于RGB色彩空间的五种皮

肤检测统计方法,最喜欢的一种源代码如下:

package com.gloomyfish.face.detection;

import java.awt.image.BufferedImage;
/**
 * this skin detection is absolutely good skin classification,
 * i love this one very much
 * 
 * this one should be always primary skin detection 
 * from all five filters
 * 
 * @author zhigang
 *
 */
public class SkinFilter4 extends AbstractBufferedImageOp {

	@Override
	public BufferedImage filter(BufferedImage src, BufferedImage dest) {
		int width = src.getWidth();
        int height = src.getHeight();

        if ( dest == null )
        	dest = createCompatibleDestImage( src, null );

        int[] inPixels = new int[width*height];
        int[] outPixels = new int[width*height];
        getRGB( src, 0, 0, width, height, inPixels );
        int index = 0;
        for(int row=0; row> 24) & 0xff;
                tr = (inPixels[index] >> 16) & 0xff;
                tg = (inPixels[index] >> 8) & 0xff;
                tb = inPixels[index] & 0xff;
                
                // detect skin method...
                double sum = tr + tg + tb;
                if (((double)tb/(double)tg<1.249) &&
	                ((double)sum/(double)(3*tr)>0.696) &&
	                (0.3333-(double)tb/(double)sum>0.014) &&
	                ((double)tg/(double)(3*sum)<0.108))
                {
                	tr = tg = tb = 0;
                } else {
                	tr = tg = tb = 255;
                }
                outPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb;
        	}
        }
        setRGB(dest, 0, 0, width, height, outPixels);
        return dest;
	}
}

第三步:寻找最大连通区域

使用连通组件标记算法,寻找最大连通区域,关于什么是连通组件标记算法,可以参见这里

http://blog.csdn.net/jia20003/article/details/7483249,里面提到的连通组件算法效率不高,所

以这里我完成了一个更具效率的版本,主要思想是对像素数据进行八邻域寻找连通,然后合

并标记。源代码如下:

package com.gloomyfish.face.detection;

import java.util.Arrays;
import java.util.HashMap;

/**
 * fast connected component label algorithm
 * 
 * @date 2012-05-23
 * @author zhigang
 *
 */
public class FastConnectedComponentLabelAlg {
	private int bgColor;
	private int[] labels;
	private int[] outData;
	private int dw;
	private int dh;
	
	public FastConnectedComponentLabelAlg() {
		bgColor = 255; // black color
	}

	public int[] doLabel(int[] inPixels, int width, int height) {
		dw = width;
		dh = height;
		int nextlabel = 1;
		int result = 0;
		labels = new int[dw * dh/2];
		outData = new int[dw * dh];
		for(int i=0; i knownLabels[m] && knownLabels[m] != 0) {
										minLabel = knownLabels[m];
									}
								}
								
								// find the final label number...
								result = (minLabel == 0) ? result : minLabel;
										
								// re-assign the label number now...
								if(knownLabels[0] != 0) {
									setData(outData, row-1, col, result);
								}
								if(knownLabels[1] != 0) {
									setData(outData, row, col-1, result);
								}
								if(knownLabels[2] != 0) {
									setData(outData, row-1, col-1, result);
								}
								if(knownLabels[3] != 0) {
									setData(outData, row-1, col+1, result);
								}
								
							}
						}
					}
				}
				outData[index] = result; // assign to label
			}
		}
		
		// post merge each labels now
		for(int row = 0; row < height; row ++) {
			for(int col = 0; col < width; col++) {
				index = row * width + col;
				mergeLabels(index);
			}
		}
		
		// labels statistic
		HashMap labelMap = new HashMap();
		for(int d=0; d

找到最大连通区域以后,对最大连通区域数据进行扫描,找出最小点,即矩形区域左上角坐

标,找出最大点,即矩形区域右下角坐标。知道这四个点坐标以后,在原图上打上红色矩形

框,标记出脸谱位置。寻找四个点坐标的实现代码如下:

	private void getFaceRectangel() {
		int width = resultImage.getWidth();
        int height = resultImage.getHeight();
        int[] inPixels = new int[width*height];
        getRGB(resultImage, 0, 0, width, height, inPixels);
        
        int index = 0;
        int ta = 0, tr = 0, tg = 0, tb = 0;
        for(int row=0; row> 24) & 0xff;
                tr = (inPixels[index] >> 16) & 0xff;
                tg = (inPixels[index] >> 8) & 0xff;
                tb = inPixels[index] & 0xff;
                if(tr == tg && tg == tb && tb == 0) { // face skin
                	if(minY > row) {
                		minY = row;
                	}
                	
                	if(minX > col) {
                		minX = col;
                	}
                	
                	if(maxY < row) {
                		maxY = row;
                	}
                	
                	if(maxX < col) {
                		maxX = col;
                	}
                }
        	}
        }
	}
缺点:

此算法不支持多脸谱检测,不支持裸体中的脸谱检测,但是根据人脸的

生物学特征可以进一步细化分析,支持裸体人脸检测。


写本文章的目的:本例为图像处理综合运行的一个简单实例。同时人脸检

测也是个感兴趣的话题。

你可能感兴趣的:(图像处理之简单脸谱检测算法(Simple Face Detection Algorithm))