使用Alexnet模型做cifar10分类
import tensorflow as tf
import numpy as np
import pickle
import os
cifar_dir = './cifar-10-batches-py'
print(os.listdir(cifar_dir))
train_filenames = [os.path.join(cifar_dir,'data_batch_%d'%i) for i in range(1,6)]
test_filenames = [os.path.join(cifar_dir,'test_batch') ]
def load_data(filename):
with open(filename,'rb') as f:
data = pickle.load(f,encoding='bytes')
return data[b'data'],data[b'labels']
class CifarData:
def __init__(self,filenames,need_shuffle):
all_data = []
all_labels = []
for i in filenames:
data,labels = load_data(i)
all_data.append(data)
all_labels.append(labels)
self._data = np.vstack(all_data) / 127.5 - 1
self._labels = np.hstack(all_labels)
self._num_examples = self._data.shape[0]
self._index = 0
self._need_shuffle = need_shuffle
if self._need_shuffle:
self.shuffle_data()
def shuffle_data(self):
o = np.random.permutation(self._num_examples)
self._data = self._data[o]
self._labels = self._labels[o]
def next_batch(self,batch_size):
end_index = self._index + batch_size
if end_index > self._num_examples:
if self._need_shuffle:
self.shuffle_data()
self._index = 0
end_index = batch_size
else:
raise Exception('没有过多样本')
if end_index > self._num_examples:
raise Exception('尺寸过大')
batch_data = self._data[self._index:end_index]
batch_labels = self._labels[self._index:end_index]
self._index = end_index
return batch_data,batch_labels
train_data = CifarData(train_filenames,True)
test_data = CifarData(test_filenames,False)
X = tf.placeholder(tf.float32,shape=[None,3072])
Y = tf.placeholder(tf.int64,shape=[None])
X_img = tf.reshape(X,[-1,3,32,32])
X_img = tf.transpose(X_img,[0,2,3,1])
conv1_1 = tf.layers.conv2d(X_img,32,(3,3),padding='same',name='conv1_1')
pooling1 = tf.layers.max_pooling2d(conv1_1,(2,2),(2,2),name='pool1')
conv2_1 = tf.layers.conv2d(pooling1,32,(3,3),padding='same',name='conv2_1')
pooling2 = tf.layers.max_pooling2d(conv2_1,(2,2),(2,2),name='pool2')
conv3_1 = tf.layers.conv2d(pooling2,32,(3,3),padding='same',name='conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1,32,(3,3),padding='same',name='conv3_2')
conv3_3 = tf.layers.conv2d(conv3_2,32,(3,3),padding='same',name='conv3_3')
pooling3 = tf.layers.max_pooling2d(conv3_3,(2,2),(2,2),name='pool3')
flatten = tf.layers.flatten(pooling3,name='flatten')
fc6 = tf.layers.dense(flatten,64,activation=tf.nn.relu,name='fc6')
fc7 = tf.layers.dense(fc6,64,activation=tf.nn.relu,name='fc7')
y_ = tf.layers.dense(fc7,10,activation=None)
loss = tf.losses.sparse_softmax_cross_entropy(logits=y_,labels=Y)
train_op = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
predict = tf.argmax(y_,1)
accuracy = tf.reduce_mean(tf.cast(tf.equal(predict,Y),dtype=tf.float32))
batch_size = 20
train_steps = 10000
test_steps = 100
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(train_steps):
x_train,y_train = train_data.next_batch(batch_size)
los,ac,_ = sess.run([loss,accuracy,train_op],feed_dict={X:x_train,Y:y_train})
if (i + 1) % 500 == 0:
print('代价:',los)
print('准确率',ac)
if (i + 1) % 5000 == 0:
all_acc = []
test_data = CifarData(test_filenames,False)
for j in range(test_steps):
x_test,y_test = test_data.next_batch(batch_size)
acc = sess.run(accuracy,feed_dict={X:x_test,Y:y_test})
all_acc.append(acc)
print('测试集准去率: ',sess.run(tf.reduce_mean(all_acc)))