UFLDL Exercise:Sparse Autoencoder

之前虽然看了ufldl的教程,但是没去做他的练习。作为一个刚刚入门机器学习的学生,还是不能偷懒,所以趁今天有时间做了第一个练习题Sparse Autoencoder

下面贴下代码 还有讲下做的过程中发现的一些问题。

STEP 1: Implement sampleIMAGES

sampleIMAGES.m

function patches = sampleIMAGES()
% sampleIMAGES
% Returns 10000 patches for training

load IMAGES;    % load images from disk 

patchsize = 8;  % we'll use 8x8 patches 
numpatches = 10000;

% Initialize patches with zeros.  Your code will fill in this matrix--one
% column per patch, 10000 columns. 
patches = zeros(patchsize*patchsize, numpatches);

%% ---------- YOUR CODE HERE --------------------------------------
%  Instructions: Fill in the variable called "patches" using data 
%  from IMAGES.  
%  
%  IMAGES is a 3D array containing 10 images
%  For instance, IMAGES(:,:,6) is a 512x512 array containing the 6th image,
%  and you can type "imagesc(IMAGES(:,:,6)), colormap gray;" to visualize
%  it. (The contrast on these images look a bit off because they have
%  been preprocessed using using "whitening."  See the lecture notes for
%  more details.) As a second example, IMAGES(21:30,21:30,1) is an image
%  patch corresponding to the pixels in the block (21,21) to (30,30) of
%  Image 1
image_size = size(IMAGES); %图像大小
for i=1:numpatches
    x = randi(image_size(1) - patchsize); %随机得到patch的最小x坐标
    y = randi(image_size(2) - patchsize); %随机得到patch的最小y坐标
    patches(:,i) = reshape(IMAGES(x:x+patchsize-1,y:y+patchsize-1,randi(image_size(3))),patchsize*patchsize,1); %随机选择一个张图片用上面得到坐标进行sample得到patch
end




%% ---------------------------------------------------------------
% For the autoencoder to work well we need to normalize the data
% Specifically, since the output of the network is bounded between [0,1]
% (due to the sigmoid activation function), we have to make sure 
% the range of pixel values is also bounded between [0,1]
patches = normalizeData(patches);

end


%% ---------------------------------------------------------------
function patches = normalizeData(patches)

% Squash data to [0.1, 0.9] since we use sigmoid as the activation
% function in the output layer

% Remove DC (mean of images). 
patches = bsxfun(@minus, patches, mean(patches));

% Truncate to +/-3 standard deviations and scale to -1 to 1
pstd = 3 * std(patches(:));
patches = max(min(patches, pstd), -pstd) / pstd;

% Rescale from [-1,1] to [0.1,0.9]
patches = (patches + 1) * 0.4 + 0.1;

end

测试下sampleIMAGES.m

patches = sampleIMAGES;
display_network(patches(:,randi(size(patches,2),200,1)),8);
得到如下的图片,说明代码没问题

UFLDL Exercise:Sparse Autoencoder_第1张图片

step 3: Gradient Checking(建议先跳过step2,先实现梯度检查代码,再实现sparseAutoencoderCost代码,这样可以保证梯度检查代码没错情况下才来检查sparseAutoencoderCost代码)

computeNumericalGradient.m

function numgrad = computeNumericalGradient(J, theta)
% numgrad = computeNumericalGradient(J, theta)
% theta: a vector of parameters
% J: a function that outputs a real-number. Calling y = J(theta) will return the
% function value at theta. 
  
% Initialize numgrad with zeros
numgrad = zeros(size(theta));

%% ---------- YOUR CODE HERE --------------------------------------
% Instructions: 
% Implement numerical gradient checking, and return the result in numgrad.  
% (See Section 2.3 of the lecture notes.)
% You should write code so that numgrad(i) is (the numerical approximation to) the 
% partial derivative of J with respect to the i-th input argument, evaluated at theta.  
% I.e., numgrad(i) should be the (approximately) the partial derivative of J with 
% respect to theta(i).
%                
% Hint: You will probably want to compute the elements of numgrad one at a time. 
epsilon = 0.0001;
for i = 1:size(theta)
    theta_add = theta;
    theta_sub = theta;
    theta_add(i) = theta_add(i) + epsilon;
    theta_sub(i) = theta_sub(i) - epsilon;
    numgrad(i) = (J(theta_add) - J(theta_sub)) / (2 * epsilon);
end







%% ---------------------------------------------------------------
end

测试下代码

checkNumericalGradient();
运行结果如下,说明代码没问题
UFLDL Exercise:Sparse Autoencoder_第2张图片

step 2:Implement sparseAutoencoderCost

sparseAutoencoderCost.m

function [cost,grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, ...
                                             lambda, sparsityParam, beta, data)

% visibleSize: the number of input units (probably 64) 
% hiddenSize: the number of hidden units (probably 25) 
% lambda: weight decay parameter
% sparsityParam: The desired average activation for the hidden units (denoted in the lecture
%                           notes by the greek alphabet rho, which looks like a lower-case "p").
% beta: weight of sparsity penalty term
% data: Our 64x10000 matrix containing the training data.  So, data(:,i) is the i-th training example. 
  
% The input theta is a vector (because minFunc expects the parameters to be a vector). 
% We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this 
% follows the notation convention of the lecture notes. 

W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize);
b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);
b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end);

% Cost and gradient variables (your code needs to compute these values). 
% Here, we initialize them to zeros. 
cost = 0;
W1grad = zeros(size(W1)); 
W2grad = zeros(size(W2));
b1grad = zeros(size(b1)); 
b2grad = zeros(size(b2));

%% ---------- YOUR CODE HERE --------------------------------------
%  Instructions: Compute the cost/optimization objective J_sparse(W,b) for the Sparse Autoencoder,
%                and the corresponding gradients W1grad, W2grad, b1grad, b2grad.
%
% W1grad, W2grad, b1grad and b2grad should be computed using backpropagation.
% Note that W1grad has the same dimensions as W1, b1grad has the same dimensions
% as b1, etc.  Your code should set W1grad to be the partial derivative of J_sparse(W,b) with
% respect to W1.  I.e., W1grad(i,j) should be the partial derivative of J_sparse(W,b) 
% with respect to the input parameter W1(i,j).  Thus, W1grad should be equal to the term 
% [(1/m) \Delta W^{(1)} + \lambda W^{(1)}] in the last block of pseudo-code in Section 2.2 
% of the lecture notes (and similarly for W2grad, b1grad, b2grad).
% 
% Stated differently, if we were using batch gradient descent to optimize the parameters,
% the gradient descent update to W1 would be W1 := W1 - alpha * W1grad, and similarly for W2, b1, b2. 
% 
a1 = sigmoid(bsxfun(@plus,W1 * data,b1)); %hidden层输出
a2 = sigmoid(bsxfun(@plus,W2 * a1,b2)); %输出层输出
p = mean(a1,2); %隐藏神经元的平均活跃度
sparsity = sparsityParam .* log(sparsityParam ./ p) + (1 - sparsityParam) .* log((1 - sparsityParam) ./ (1.-p)); %惩罚因子
cost = sum(sum((a2 - data).^2)) / 2 / size(data,2) + lambda / 2 * (sum(sum(W1.^2)) + sum(sum(W2.^2))) + beta * sum(sparsity); %代价函数
delt2 = (a2 - data) .* a2 .* (1 - a2); %输出层残差
delt1 = (W2' * delt2 + beta .* repmat((-sparsityParam./p + (1-sparsityParam)./(1.-p)),1,size(data,2))) .* a1 .* (1 - a1); %hidden层残差
W2grad = delt2 * a1' ./ size(data,2) + lambda * W2; 
W1grad = delt1 * data' ./ size(data,2) + lambda * W1;
b2grad = sum(delt2,2) ./ size(data,2);
b1grad = sum(delt1,2) ./ size(data,2);

%-------------------------------------------------------------------
% After computing the cost and gradient, we will convert the gradients back
% to a vector format (suitable for minFunc).  Specifically, we will unroll
% your gradient matrices into a vector.

grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)];

end

%-------------------------------------------------------------------
% Here's an implementation of the sigmoid function, which you may find useful
% in your computation of the costs and the gradients.  This inputs a (row or
% column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). 

function sigm = sigmoid(x)
  
    sigm = 1 ./ (1 + exp(-x));
end

测试下代码

visibleSize = 8*8;
hiddenSize = 25;     
sparsityParam = 0.01;   
lambda = 0.0001;         
beta = 3;              
patches = sampleIMAGES;
patches = patches(:,1:2); %建议用部分训练数据测试即可
theta = initializeParameters(hiddenSize, visibleSize);
[cost, grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, lambda, ...
                                     sparsityParam, beta, patches);
numgrad = computeNumericalGradient( @(x) sparseAutoencoderCost(x, visibleSize, ...
                                                          hiddenSize, lambda, ...
                                                          sparsityParam, beta, ...
                                                   patches), theta);

disp([numgrad grad]); 
diff = norm(numgrad-grad)/norm(numgrad+grad);
disp(diff); 

结果如下,误差很小,代码没问题
UFLDL Exercise:Sparse Autoencoder_第3张图片

step4 & 5:train the sparse autoencoder & visualization

代码如下

%% STEP 4: After verifying that your implementation of
%  sparseAutoencoderCost is correct, You can start training your sparse
%  autoencoder with minFunc (L-BFGS).
visibleSize = 8*8;   % number of input units 
hiddenSize = 25;     % number of hidden units 
sparsityParam = 0.01;   % desired average activation of the hidden units.
                     % (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
		     %  in the lecture notes). 
lambda = 0.0001;     % weight decay parameter       
beta = 3;            % weight of sparsity penalty term 
theta = initializeParameters(hiddenSize, visibleSize); %  Randomly initialize the parameters
patches = sampleIMAGES;
%  Use minFunc to minimize the function
addpath minFunc/
options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost
                          % function. Generally, for minFunc to work, you
                          % need a function pointer with two outputs: the
                          % function value and the gradient. In our problem,
                          % sparseAutoencoderCost.m satisfies this.
options.maxIter = 400;	  % Maximum number of iterations of L-BFGS to run 
options.display = 'on';


[opttheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...
                                   visibleSize, hiddenSize, ...
                                   lambda, sparsityParam, ...
                                   beta, patches), ...
                              theta, options);

%%======================================================================
%% STEP 5: Visualization 

W1 = reshape(opttheta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
display_network(W1', 12); 

print -djpeg weights.jpg   % save the visualization to a file 

最终结果如下

UFLDL Exercise:Sparse Autoencoder_第4张图片

做的过程中发现,如果不加权重衰减和稀疏性限制,效果会很差,不能出现上面这样的效果。

下图是不加权重衰减和稀疏性限制训练出来的效果


UFLDL Exercise:Sparse Autoencoder_第5张图片

下图是加了权重衰减但没加稀疏性限制训练出来的结果

UFLDL Exercise:Sparse Autoencoder_第6张图片


下图是加了稀疏性限制但没加权重衰减训练出来的结果


UFLDL Exercise:Sparse Autoencoder_第7张图片

由此看出权重衰减和稀疏性对结果的影响挺大的,以后用神经网络时要记得加上!

你可能感兴趣的:(机器学习)