这一节讲的是cnn里面最核心的两个操作:convolution和pooling,至于这两个操作的作用和具体的做法这里就不罗嗦了。可惜这个教程没有讲解cnn的bp算法,虽然说跟普通的多层神经网络思想是一样的,但对新手来说实现cnn的bp算法还是需要花一定时间去研究的~
function convolvedFeatures = cnnConvolve(patchDim, numFeatures, images, W, b, ZCAWhite, meanPatch)
%cnnConvolve Returns the convolution of the features given by W and b with
%the given images
%
% Parameters:
% patchDim - patch (feature) dimension
% numFeatures - number of features
% images - large images to convolve with, matrix in the form
% images(r, c, channel, image number)
% W, b - W, b for features from the sparse autoencoder
% ZCAWhite, meanPatch - ZCAWhitening and meanPatch matrices used for
% preprocessing
%
% Returns:
% convolvedFeatures - matrix of convolved features in the form
% convolvedFeatures(featureNum, imageNum, imageRow, imageCol)
numImages = size(images, 4);
imageDim = size(images, 1);
imageChannels = size(images, 3);
convolvedFeatures = zeros(numFeatures, numImages, imageDim - patchDim + 1, imageDim - patchDim + 1);
% Instructions:
% Convolve every feature with every large image here to produce the
% numFeatures x numImages x (imageDim - patchDim + 1) x (imageDim - patchDim + 1)
% matrix convolvedFeatures, such that
% convolvedFeatures(featureNum, imageNum, imageRow, imageCol) is the
% value of the convolved featureNum feature for the imageNum image over
% the region (imageRow, imageCol) to (imageRow + patchDim - 1, imageCol + patchDim - 1)
%
% Expected running times:
% Convolving with 100 images should take less than 3 minutes
% Convolving with 5000 images should take around an hour
% (So to save time when testing, you should convolve with less images, as
% described earlier)
% -------------------- YOUR CODE HERE --------------------
% Precompute the matrices that will be used during the convolution. Recall
% that you need to take into account the whitening and mean subtraction
% steps
%根据题目提供的公式可以得到下面的两个变量,将会在卷积的时候使用到
WT = W * ZCAWhite;
add = b - W * ZCAWhite * meanPatch;
% --------------------------------------------------------
convolvedFeatures = zeros(numFeatures, numImages, imageDim - patchDim + 1, imageDim - patchDim + 1);
for imageNum = 1:numImages
for featureNum = 1:numFeatures
% convolution of image with feature matrix for each channel
convolvedImage = zeros(imageDim - patchDim + 1, imageDim - patchDim + 1);
for channel = 1:3
% Obtain the feature (patchDim x patchDim) needed during the convolution
% ---- YOUR CODE HERE ----
feature = zeros(8,8); % You should replace this
feature = reshape(WT(featureNum,patchDim*patchDim*(channel-1)+1:patchDim*patchDim*channel),patchDim,patchDim);%WT的size为(numFeatures,patchDim*patchDim*channel),注意每一行是由三个通道所对应的权重排列而成的,比如一行的前patchDim*patchDim是R通道的权重,接下来的patchDim*patchDim是G通道的权重,以此类推。所以我们在这里把它拆开,存到feature中。
% ------------------------
% Flip the feature matrix because of the definition of convolution, as explained later
feature = flipud(fliplr(squeeze(feature)));
% Obtain the image
im = squeeze(images(:, :, channel, imageNum));
% Convolve "feature" with "im", adding the result to convolvedImage
% be sure to do a 'valid' convolution
% ---- YOUR CODE HERE ----
convolvedImage = convolvedImage + conv2(im,feature,'valid');%使用matlab提供的卷积函数,注意要使用valid~,并且是讲三个通道的卷积值加起来作为最后的卷积结果
% ------------------------
end
% Subtract the bias unit (correcting for the mean subtraction as well)
% Then, apply the sigmoid function to get the hidden activation
% ---- YOUR CODE HERE ----
convolvedImage = sigmoid(convolvedImage + add(featureNum));%加上bias再使用sigmoid函数
% ------------------------
% The convolved feature is the sum of the convolved values for all channels
convolvedFeatures(featureNum, imageNum, :, :) = convolvedImage;
end
end
end
function sigm = sigmoid(x)
sigm = 1 ./ (1 + exp(-x));
end
function pooledFeatures = cnnPool(poolDim, convolvedFeatures)
%cnnPool Pools the given convolved features
%
% Parameters:
% poolDim - dimension of pooling region
% convolvedFeatures - convolved features to pool (as given by cnnConvolve)
% convolvedFeatures(featureNum, imageNum, imageRow, imageCol)
%
% Returns:
% pooledFeatures - matrix of pooled features in the form
% pooledFeatures(featureNum, imageNum, poolRow, poolCol)
%
numImages = size(convolvedFeatures, 2);
numFeatures = size(convolvedFeatures, 1);
convolvedDim = size(convolvedFeatures, 3);
pooledFeatures = zeros(numFeatures, numImages, floor(convolvedDim / poolDim), floor(convolvedDim / poolDim));
% -------------------- YOUR CODE HERE --------------------
% Instructions:
% Now pool the convolved features in regions of poolDim x poolDim,
% to obtain the
% numFeatures x numImages x (convolvedDim/poolDim) x (convolvedDim/poolDim)
% matrix pooledFeatures, such that
% pooledFeatures(featureNum, imageNum, poolRow, poolCol) is the
% value of the featureNum feature for the imageNum image pooled over the
% corresponding (poolRow, poolCol) pooling region
% (see http://ufldl/wiki/index.php/Pooling )
%
% Use mean pooling here.
% -------------------- YOUR CODE HERE --------------------
for imageNum = 1:numImages
for featureNum = 1:numFeatures
temp = conv2(squeeze(convolvedFeatures(featureNum,imageNum,:,:)),ones(poolDim)/poolDim/poolDim,'valid');%用一个2*2且值都为1/4的卷积核与图像进行卷积,其实就可以模拟pooling的效果,注意这里使用valid~
pooledFeatures(featureNum,imageNum,:,:) = temp(1:poolDim:end,1:poolDim:end);%因为卷积的步长是1,而pooling的步长是poolDim,所以按poolDim步长去采样上面卷积的结果就得到pool feature了~
end
end
end
至此完成了convolution和pooling的代码了,我们还要验证下代码有没有问题,才进行下个步骤~运行下面的代码可以检查上面的两个函数的实现是否有问题~
imageDim = 64; % image dimension
imageChannels = 3; % number of channels (rgb, so 3)
patchDim = 8; % patch dimension
numPatches = 50000; % number of patches
visibleSize = patchDim * patchDim * imageChannels; % number of input units
outputSize = visibleSize; % number of output units
hiddenSize = 400; % number of hidden units
epsilon = 0.1; % epsilon for ZCA whitening
poolDim = 19; % dimension of pooling region
optTheta = zeros(2*hiddenSize*visibleSize+hiddenSize+visibleSize, 1);
ZCAWhite = zeros(visibleSize, visibleSize);
meanPatch = zeros(visibleSize, 1);
load STL10Features.mat;
W = reshape(optTheta(1:visibleSize * hiddenSize), hiddenSize, visibleSize);
b = optTheta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);
load stlTrainSubset.mat;
convImages = trainImages(:, :, :, 1:8);
% NOTE: Implement cnnConvolve in cnnConvolve.m first!
convolvedFeatures = cnnConvolve(patchDim, hiddenSize, convImages, W, b, ZCAWhite, meanPatch);
%% STEP 2b: Checking your convolution
% To ensure that you have convolved the features correctly, we have
% provided some code to compare the results of your convolution with
% activations from the sparse autoencoder
% For 1000 random points
for i = 1:1000
featureNum = randi([1, hiddenSize]);
imageNum = randi([1, 8]);
imageRow = randi([1, imageDim - patchDim + 1]);
imageCol = randi([1, imageDim - patchDim + 1]);
patch = convImages(imageRow:imageRow + patchDim - 1, imageCol:imageCol + patchDim - 1, :, imageNum);
patch = patch(:);
patch = patch - meanPatch;
patch = ZCAWhite * patch;
features = feedForwardAutoencoder(optTheta, hiddenSize, visibleSize, patch);
if abs(features(featureNum, 1) - convolvedFeatures(featureNum, imageNum, imageRow, imageCol)) > 1e-9
fprintf('Convolved feature does not match activation from autoencoder\n');
fprintf('Feature Number : %d\n', featureNum);
fprintf('Image Number : %d\n', imageNum);
fprintf('Image Row : %d\n', imageRow);
fprintf('Image Column : %d\n', imageCol);
fprintf('Convolved feature : %0.5f\n', convolvedFeatures(featureNum, imageNum, imageRow, imageCol));
fprintf('Sparse AE feature : %0.5f\n', features(featureNum, 1));
error('Convolved feature does not match activation from autoencoder');
end
end
disp('Congratulations! Your convolution code passed the test.');
%% STEP 2c: Implement pooling
% Implement pooling in the function cnnPool in cnnPool.m
% NOTE: Implement cnnPool in cnnPool.m first!
pooledFeatures = cnnPool(poolDim, convolvedFeatures);
%% STEP 2d: Checking your pooling
% To ensure that you have implemented pooling, we will use your pooling
% function to pool over a test matrix and check the results.
testMatrix = reshape(1:64, 8, 8);
expectedMatrix = [mean(mean(testMatrix(1:4, 1:4))) mean(mean(testMatrix(1:4, 5:8))); ...
mean(mean(testMatrix(5:8, 1:4))) mean(mean(testMatrix(5:8, 5:8))); ];
testMatrix = reshape(testMatrix, 1, 1, 8, 8);
pooledFeatures = squeeze(cnnPool(4, testMatrix));
if ~isequal(pooledFeatures, expectedMatrix)
disp('Pooling incorrect');
disp('Expected');
disp(expectedMatrix);
disp('Got');
disp(pooledFeatures);
else
disp('Congratulations! Your pooling code passed the test.');
end
结果没问题~