非平衡学习资料

入门博客:

learning imbalanced classes
介绍的非常详细,适合零基础同学阅读

代码:

imbalanced-algorithms
提供了以下算法的实现:

  • Undersampling:
    • Random Majority Undersampling with/without Replacement
  • Oversampling:
    • SMOTE - Synthetic Minority Over-sampling Technique
    • DAE - Denoising Autoencoder (TensorFlow)
    • GAN - Generative Adversarial Network (TensorFlow)
    • VAE - Variational Autoencoder (TensorFlow)
  • Ensemble Sampling
    • RAMOBoost
    • RUSBoost
    • SMOTEBoost

imbalanced-learn
imbalanced-learn is a python package offering a number of re-sampling techniques commonly used in datasets showing strong between-class imbalance

paperlist:

Paper-list-on-Imbalanced-Time-series-Classification-with-Deep-Learning
已经有日子没更新了,不是最新的

你可能感兴趣的:(非平衡数据)