深度学习deep learning环境配置:GTX1080+CUDA8.0+cudnn5

GTX1080

http://blog.csdn.net/v_july_v/article/details/52658965
http://blog.csdn.net/u010900574/article/details/52201808

教你从头到尾利用DL学梵高作画:GTX 1080 cuda 8.0 tensorflow gpu版
因为GTX 1070下装cuda8.0实在是费劲呐(1070+8.0之所以难装,一个是网上教程很少,一个是1080 8.0都是刚出来的,特别是1080目前只能用cuda 8.0。可能960/970/980搭cuda 7.5会轻松太多)。

二、配置
我们的配置为
硬件配置:酷睿i7-6700+GTX1080+500G固态硬盘+32G内存+主板
软件配置:Ubuntu14.04 +GTX1080显卡驱动+CUDA8.0+cudnn5.1+Tensorflow

GTX1070显卡驱动
http://www.geforce.cn/drivers(下载地址)

3.3、 CUDA
https://developer.nvidia.com/cuda-toolkit(下载地址)

说明:
(1)在NVIDIA的CUDA下载页面下,选择要使用的CUDA版本进行下载。
(2)我们这里使用CUDA8.0(页面有提示GTX1070、GTX1080支持8.0版本)
(3)下载需要注册。

3.4、 Cudnn
https://developer.nvidia.com/cudnn(下载地址)

3.5、 Tensorflow
tensorflow github上面提到 4 种安装方式,本教程使用 第四种 源码安装

Virtualenv installation
Anaconda installation
Docker installation
Installing from sources
https://github.com/tensorflow/tensorflow(下载地址)

四、 安装
4.1、 安装Ubuntu14.04:

说明:
(1)我们直接安装的英文原版系统,语言也是选择英文的。
(2)上述链接在–第三步:安装类型上选择的是–自定义。我们选择的是–清除整个磁盘并且安装,如果你有Windows系统,还会提示安装Ubuntu14.04与Windows并存模式。这个自行选择,切记!这个地方谨慎选择。

4.2、 安装GTX1080显卡驱动及CUDA8.0:
注:安装驱动需要在字符界面下安装

(8) 安装NVIDIA结束后,同样操作安装CUDA8.0,这里需要注意其中一个地方需要填写N才行,不能写Y。如图
Install NVIDIA Accelerated Graphics Driver for Linux…..
choose : N

4.3、 Cudnn安装

tar xvzf cudnn-7.5-linux-x64-v5.1-ga.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

Configure the installation

For example:

$ ./configure
Please specify the location of python. [Default is /usr/bin/python]:
Do you wish to build TensorFlow with Google Cloud Platform support? [y/N] N
No Google Cloud Platform support will be enabled for TensorFlow
Do you wish to build TensorFlow with GPU support? [y/N] y
GPU support will be enabled for TensorFlow
Please specify which gcc nvcc should use as the host compiler. [Default is /usr/bin/gcc]:
Please specify the Cuda SDK version you want to use, e.g. 7.0. [Leave empty to use system default]: 7.5
Please specify the location where CUDA 7.5 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]:
Please specify the cuDNN version you want to use. [Leave empty to use system default]: 5
Please specify the location where cuDNN 5 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda]:
Please specify a list of comma-separated Cuda compute capabilities you want to build with.
You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus.
Please note that each additional compute capability significantly increases your build time and binary size.

Setting up Cuda include
Setting up Cuda lib
Setting up Cuda bin
Setting up Cuda nvvm
Setting up CUPTI include
Setting up CUPTI lib64
Configuration finished

你可能感兴趣的:(深度学习deep learning环境配置:GTX1080+CUDA8.0+cudnn5)