Vue源码学习(持续更新中)

Vue源码学习

    • 章节目录
    • 准备工作
      • 认识Flow
        • 为什么用 Flow
        • Flow 的工作方式
          • 类型推断
          • 类型注释
            • 数组
            • 类和对象
            • null
          • Flow 在 Vue.js 源码中的应用
        • 总结
      • Vue.js 源码目录设计
        • compiler
        • core
        • platform
        • server
        • sfc
        • shared
        • 总结
      • 从入口开始
        • Vue的入口
          • Vue 的定义
          • initGlobalAPI
      • 总结
    • 数据驱动
      • new Vue()发生了什么
        • 总结-new Vue()
      • Vue实例挂载的实现
        • 总结-Vue实例挂载的实现
      • render
        • 总结-render
      • Virtual DOM
        • 总结-Virtual DOM
      • createElement
        • children 的规范化
        • VNode 的创建
        • 总结
      • update
        • 调试
        • 总结-update
    • 组件化
      • createComponent

先占个位置,看看学习完整理成博客需要耗时多久
vue版本:Vue.js 2.5.17-beta.0

学习内容来自 黄轶老师
黄轶老师的慕课网视频教程地址:《Vue.js 源码揭秘》

为了分析 Vue 的编译过程,我们这里分析的源码是 Runtime + Compiler 的 Vue.js。

调试代码在:node_modules\vue\dist\vue.esm.js 里添加

章节目录

Vue源码学习(持续更新中)_第1张图片

准备工作

认识Flow

Flow 是 facebook 出品的 JavaScript 静态类型检查工具。Vue.js 的源码利用了 Flow 做了静态类型检查,所以了解 Flow 有助于我们阅读源码。

为什么用 Flow

JavaScript 是动态类型语言,它的灵活性有目共睹,但是过于灵活的副作用是很容易就写出非常隐蔽的隐患代码,在编译期甚至看上去都不会报错,但在运行阶段就可能出现各种奇怪的 bug。

类型检查是当前动态类型语言的发展趋势,所谓类型检查,就是在编译期尽早发现(由类型错误引起的)bug,又不影响代码运行(不需要运行时动态检查类型),使编写 JavaScript 具有和编写 Java 等强类型语言相近的体验。

项目越复杂就越需要通过工具的手段来保证项目的维护性和增强代码的可读性。 Vue.js 在做 2.0 重构的时候,在 ES2015 的基础上,除了 ESLint 保证代码风格之外,也引入了 Flow 做静态类型检查。之所以选择 Flow,主要是因为 Babel 和 ESLint 都有对应的 Flow 插件以支持语法,可以完全沿用现有的构建配置,非常小成本的改动就可以拥有静态类型检查的能力。

Flow 的工作方式

通常类型检查分成 2 种方式:

  • 类型推断:通过变量的使用上下文来推断出变量类型,然后根据这些推断来检查类型。
  • 类型注释:事先注释好我们期待的类型,Flow 会基于这些注释来判断。
类型推断

不需要任何代码修改即可进行类型检查,最小化开发者的工作量。它不会强制你改变开发习惯,因为它会自动推断出变量的类型。这就是所谓的类型推断,Flow 最重要的特性之一。

通过一个简单例子说明一下:

/*@flow*/

function split(str) {
  return str.split(' ')
}

split(11)

Flow 检查上述代码后会报错,因为函数 split 期待的参数是字符串,而我们输入了数字。

类型注释

如上所述,类型推断是 Flow 最有用的特性之一,不需要编写类型注释就能获取有用的反馈。但在某些特定的场景下,添加类型注释可以提供更好更明确的检查依据。

考虑如下代码:

/*@flow*/

function add(x, y){
  return x + y
}

add('Hello', 11)

Flow 检查上述代码时检查不出任何错误,因为从语法层面考虑, + 既可以用在字符串上,也可以用在数字上,我们并没有明确指出 add() 的参数必须为数字。

在这种情况下,我们可以借助类型注释来指明期望的类型。类型注释是以冒号 : 开头,可以在函数参数返回值变量声明中使用。

如果我们在上段代码中添加类型注释,就会变成如下:

/*@flow*/

function add(x:number, y:number):number {
	return x + y
}

add('Hello', 11)

现在 Flow 就能检查出错误,因为函数参数的期待类型为数字,而我们提供了字符串。

上面的例子是针对函数的类型注释。接下来我们来看看 Flow 能支持的一些常见的类型注释。

数组
/*@flow*/

var arr: Array<number> = [1, 2, 3]

arr.push('hello')

数组类型注释的格式是ArrayT表示数组中每项的数据类型
在上述代码中,arr 是每项均为数字的数组。如果我们给这个数组添加了一个字符串,Flow 能检查出错误。

类和对象
/*@flow*/

class Bar {
	x: string; // x 是字符串
	y: string | number; // y 可以是字符串或者数字
	z: boolean;

	constructor(x: string, y: string | number) {
		this.x = x
		this.y = y
		this.z = false
	}
}

var bar: Bar = new Bar('hello', 4)

var obj:  {
	a: string,
	b: number,
	c: Array<string>,
	d: Bar
} = {
	a: 'hello',
	b: 11,
	c: ['hello', 'world'],
	d: new Bar('hello', 3)
}

类的类型注释格式如上,可以对类自身的属性做类型检查,也可以对构造函数的参数做类型检查。这里需要注意的是,属性 y 的类型中间用 | 做间隔,表示 y 的类型即可以是字符串也可以是数字。

对象的注释类型类似于类,需要指定对象属性的类型。

null

若想任意类型 T可以为 null 或者 undefined,只需类似如下写成 ?T的格式即可。

/*@flow*/

var foo: ?string = null

此时,foo 可以为字符串也可以为 null

目前我们只列举了 Flow 的一些常见的类型注释。如果想了解所有类型注释,请移步 Flow 的官方文档

Flow 在 Vue.js 源码中的应用

有时候我们想引用第三方库,或者自定义一些类型,但 Flow 并不认识,因此检查的时候会报错。为了解决这类问题,Flow 提出了一个 libdef 的概念,可以用来识别这些第三方库或者是自定义类型,而 Vue.js 也利用了这一特性。

在 Vue.js 的主目录下有 .flowconfig 文件, 它是mermaid flowchat 的配置文件,感兴趣的同学可以看官方文档。这其中的 [libs] 部分用来描述包含指定库定义的目录,默认是名为 flow-typed 的目录。

这里 [libs] 配置的是 flow,表示指定的库定义都在 flow 文件夹内。我们打开这个目录,会发现文件如下:

flow
├── compiler.js        # 编译相关
├── component.js       # 组件数据结构
├── global-api.js      # Global API 结构
├── modules.js         # 第三方库定义
├── options.js         # 选项相关
├── ssr.js             # 服务端渲染相关
├── vnode.js           # 虚拟 node 相关

可以看到,Vue.js 有很多自定义类型的定义,在阅读源码的时候,如果遇到某个类型并想了解它完整的数据结构的时候,可以回来翻阅这些数据结构的定义。

总结

通过对 Flow 的认识,有助于我们阅读 Vue 的源码,并且这种静态类型检查的方式非常有利于大型项目源码的开发和维护。类似 Flow 的工具还有如 TypeScript,感兴趣的同学也可以自行去了解一下。

Vue.js 源码目录设计

Vue.js 的源码都在 src 目录下,其目录结构如下。

src
├── compiler        # 编译相关 
├── core            # 核心代码 
├── platforms       # 不同平台的支持
├── server          # 服务端渲染
├── sfc             # .vue 文件解析
├── shared          # 共享代码

compiler

compiler 目录包含 Vue.js 所有编译相关的代码。它包括把模板解析成 ast 语法树,ast 语法树优化,代码生成等功能。

编译的工作可以在构建时做(借助 webpack、vue-loader 等辅助插件);也可以在运行时做,使用包含构建功能的 Vue.js。显然,编译是一项耗性能的工作,所以更推荐前者——离线编译。

core

core 目录包含了 Vue.js 的核心代码,包括内置组件、全局 API 封装,Vue 实例化、观察者、虚拟 DOM、工具函数等等。

这里的代码可谓是 Vue.js 的灵魂

platform

Vue.js 是一个跨平台的 MVVM 框架,它可以跑在 web 上,也可以配合 weex 跑在 native 客户端上。platform 是 Vue.js 的入口,2 个目录代表 2 个主要入口,分别打包成运行在 web 上和 weex 上的 Vue.js。

这边博客重点分析 web 入口打包后的 Vue.js

server

Vue.js 2.0 支持了服务端渲染,所有服务端渲染相关的逻辑都在这个目录下。注意:这部分代码是跑在服务端的 Node.js,不要和跑在浏览器端的 Vue.js 混为一谈。

服务端渲染主要的工作是把组件渲染为服务器端的 HTML 字符串,将它们直接发送到浏览器,最后将静态标记"混合"为客户端上完全交互的应用程序。

sfc

通常我们开发 Vue.js 都会借助 webpack 构建, 然后通过 .vue 单文件来编写组件。

这个目录下的代码逻辑会把 .vue 文件内容解析成一个 JavaScript 的对象。

shared

Vue.js 会定义一些工具方法,这里定义的工具方法都是会被浏览器端的 Vue.js 和服务端的 Vue.js 所共享的。

总结

从 Vue.js 的目录设计可以看到,作者把功能模块拆分的非常清楚,相关的逻辑放在一个独立的目录下维护,并且把复用的代码也抽成一个独立目录。

这样的目录设计让代码的阅读性和可维护性都变强,非常值得学习和推敲。

从入口开始

我们之前提到过 Vue.js 构建过程,在 web 应用下,我们来分析 Runtime + Compiler 构建出来的 Vue.js,它的入口是 src/platforms/web/entry-runtime-with-compiler.js:

src/platforms/web/entry-runtime-with-compiler.js:

/* @flow */

import config from 'core/config'
import { warn, cached } from 'core/util/index'
import { mark, measure } from 'core/util/perf'

import Vue from './runtime/index'
import { query } from './util/index'
import { compileToFunctions } from './compiler/index'
import { shouldDecodeNewlines, shouldDecodeNewlinesForHref } from './util/compat'

const idToTemplate = cached(id => {
  const el = query(id)
  return el && el.innerHTML
})

const mount = Vue.prototype.$mount
Vue.prototype.$mount = function (
  el?: string | Element,
  hydrating?: boolean
): Component {
  el = el && query(el)

  /* istanbul ignore if */
  if (el === document.body || el === document.documentElement) {
    process.env.NODE_ENV !== 'production' && warn(
      `Do not mount Vue to  or  - mount to normal elements instead.`
    )
    return this
  }

  const options = this.$options
  // resolve template/el and convert to render function
  if (!options.render) {
    let template = options.template
    if (template) {
      if (typeof template === 'string') {
        if (template.charAt(0) === '#') {
          template = idToTemplate(template)
          /* istanbul ignore if */
          if (process.env.NODE_ENV !== 'production' && !template) {
            warn(
              `Template element not found or is empty: ${options.template}`,
              this
            )
          }
        }
      } else if (template.nodeType) {
        template = template.innerHTML
      } else {
        if (process.env.NODE_ENV !== 'production') {
          warn('invalid template option:' + template, this)
        }
        return this
      }
    } else if (el) {
      template = getOuterHTML(el)
    }
    if (template) {
      /* istanbul ignore if */
      if (process.env.NODE_ENV !== 'production' && config.performance && mark) {
        mark('compile')
      }

      const { render, staticRenderFns } = compileToFunctions(template, {
        outputSourceRange: process.env.NODE_ENV !== 'production',
        shouldDecodeNewlines,
        shouldDecodeNewlinesForHref,
        delimiters: options.delimiters,
        comments: options.comments
      }, this)
      options.render = render
      options.staticRenderFns = staticRenderFns

      /* istanbul ignore if */
      if (process.env.NODE_ENV !== 'production' && config.performance && mark) {
        mark('compile end')
        measure(`vue ${this._name} compile`, 'compile', 'compile end')
      }
    }
  }
  return mount.call(this, el, hydrating)
}

/**
 * Get outerHTML of elements, taking care
 * of SVG elements in IE as well.
 */
function getOuterHTML (el: Element): string {
  if (el.outerHTML) {
    return el.outerHTML
  } else {
    const container = document.createElement('div')
    container.appendChild(el.cloneNode(true))
    return container.innerHTML
  }
}

Vue.compile = compileToFunctions

export default Vue

那么,当我们的代码执行import Vue from 'vue'的时候,就是从这个入口执行代码来初始化 Vue, 那么 Vue 到底是什么,它是怎么初始化的,我们来一探究竟。

Vue的入口

在这个入口 JS 的上方我们可以找到 Vue 的来源:import Vue from ‘./runtime/index’,我们先来看一下这块儿的实现,它定义在 src/platforms/web/runtime/index.js 中

src/platforms/web/runtime/index.js

import Vue from 'core/index'
import config from 'core/config'
import { extend, noop } from 'shared/util'
import { mountComponent } from 'core/instance/lifecycle'
import { devtools, inBrowser, isChrome } from 'core/util/index'

import {
  query,
  mustUseProp,
  isReservedTag,
  isReservedAttr,
  getTagNamespace,
  isUnknownElement
} from 'web/util/index'

import { patch } from './patch'
import platformDirectives from './directives/index'
import platformComponents from './components/index'

// install platform specific utils
Vue.config.mustUseProp = mustUseProp
Vue.config.isReservedTag = isReservedTag
Vue.config.isReservedAttr = isReservedAttr
Vue.config.getTagNamespace = getTagNamespace
Vue.config.isUnknownElement = isUnknownElement

// install platform runtime directives & components
extend(Vue.options.directives, platformDirectives)
extend(Vue.options.components, platformComponents)

// install platform patch function
Vue.prototype.__patch__ = inBrowser ? patch : noop

// public mount method
Vue.prototype.$mount = function (
  el?: string | Element,
  hydrating?: boolean
): Component {
  el = el && inBrowser ? query(el) : undefined
  return mountComponent(this, el, hydrating)
}

// ...

export default Vue

这里关键的代码是 import Vue from ‘core/index’,之后的逻辑都是对 Vue 这个对象做一些扩展,可以先不用看,我们来看一下真正初始化 Vue 的地方,在 src/core/index.js 中:

src/core/index.js

import Vue from './instance/index'
import { initGlobalAPI } from './global-api/index'
import { isServerRendering } from 'core/util/env'
import { FunctionalRenderContext } from 'core/vdom/create-functional-component'

initGlobalAPI(Vue)

Object.defineProperty(Vue.prototype, '$isServer', {
  get: isServerRendering
})

Object.defineProperty(Vue.prototype, '$ssrContext', {
  get () {
    /* istanbul ignore next */
    return this.$vnode && this.$vnode.ssrContext
  }
})

// expose FunctionalRenderContext for ssr runtime helper installation
Object.defineProperty(Vue, 'FunctionalRenderContext', {
  value: FunctionalRenderContext
})

Vue.version = '__VERSION__'

export default Vue

这里有 2 处关键的代码,import Vue from './instance/index' 和 initGlobalAPI(Vue),初始化全局 Vue API(我们稍后介绍),
我们先来看第一部分,在 src/core/instance/index.js 中:

Vue 的定义

src/core/instance/index.js

import { initMixin } from './init'
import { stateMixin } from './state'
import { renderMixin } from './render'
import { eventsMixin } from './events'
import { lifecycleMixin } from './lifecycle'
import { warn } from '../util/index'

function Vue (options) {
  if (process.env.NODE_ENV !== 'production' &&
    !(this instanceof Vue)
  ) {
    warn('Vue is a constructor and should be called with the `new` keyword')
  }
  this._init(options)
}

initMixin(Vue)
stateMixin(Vue)
eventsMixin(Vue)
lifecycleMixin(Vue)
renderMixin(Vue)

export default Vue

在这里,我们终于看到了Vue 的庐山真面目,它实际上就是一个用 Function 实现的类,我们只能通过 new Vue 去实例化它。

有些同学看到这不禁想问,为何 Vue 不用 ES6 的 Class 去实现呢?我们往后看这里有很多 xxxMixin 的函数调用,并把 Vue 当参数传入它们的功能都是给 Vue 的 prototype 上扩展一些方法(这里具体的细节会在之后的文章介绍,这里不展开),Vue 按功能把这些扩展分散到多个模块中去实现,而不是在一个模块里实现所有,这种方式是用 Class 难以实现的。这么做的好处是非常方便代码的维护和管理,这种编程技巧也非常值得我们去学习。

initGlobalAPI

Vue.js 在整个初始化过程中,除了给它的原型 prototype 上扩展方法,还会给 Vue 这个对象本身扩展全局的静态方法,它的定义在 src/core/global-api/index.js 中:

src/core/global-api/index.js

export function initGlobalAPI (Vue: GlobalAPI) {
  // config
  const configDef = {}
  configDef.get = () => config
  if (process.env.NODE_ENV !== 'production') {
    configDef.set = () => {
      warn(
        'Do not replace the Vue.config object, set individual fields instead.'
      )
    }
  }
  Object.defineProperty(Vue, 'config', configDef)

  // exposed util methods.
  // NOTE: these are not considered part of the public API - avoid relying on
  // them unless you are aware of the risk.
  Vue.util = {
    warn,
    extend,
    mergeOptions,
    defineReactive
  }

  Vue.set = set
  Vue.delete = del
  Vue.nextTick = nextTick

  Vue.options = Object.create(null)
  ASSET_TYPES.forEach(type => {
    Vue.options[type + 's'] = Object.create(null)
  })

  // this is used to identify the "base" constructor to extend all plain-object
  // components with in Weex's multi-instance scenarios.
  Vue.options._base = Vue

  extend(Vue.options.components, builtInComponents)

  initUse(Vue)
  initMixin(Vue)
  initExtend(Vue)
  initAssetRegisters(Vue)
}

这里就是在 Vue 上扩展的一些全局方法的定义,Vue 官网中关于全局 API 都可以在这里找到,这里不会介绍细节,会在之后的章节我们具体介绍到某个 API 的时候会详细介绍。有一点要注意的是,Vue.util 暴露的方法最好不要依赖,因为它可能经常会发生变化,是不稳定的。

总结

那么至此,Vue 的初始化过程基本介绍完毕。这一节的目的是让同学们对 Vue 是什么有一个直观的认识,
它本质上就是一个用 Function 实现的 Class
然后它的原型 prototype 以及它本身都扩展了一系列的方法和属性
那么 Vue 能做什么,它是怎么做的,我们会在后面的章节一层层帮大家揭开 Vue 的神秘面纱。

数据驱动

Vue.js一个核心思想数据驱动。所谓数据驱动,是指视图是由数据驱动生成的,我们对视图的修改,不会直接操作 DOM,而是通过修改数据。

它相比我们传统的前端开发,如使用 jQuery 等前端库直接修改 DOM,大大简化了代码量。特别是当交互复杂的时候,只关心数据的修改让代码的逻辑变的非常清晰,因为 DOM 变成了数据的映射,我们所有的逻辑都是对数据的修改,而不用碰触 DOM,这样的代码非常利于维护

在 Vue.js 中我们可以采用简洁的模板语法来声明式的将数据渲染为 DOM:

<div id="app">
  {{ message }}
div>
var app = new Vue({
  el: '#app',
  data: {
    message: 'Hello Vue!'
  }
})

最终它会在页面上渲染出 Hello Vue。接下来,我们会从源码角度来分析 Vue 是如何实现的,分析过程会以主线代码为主重要的分支逻辑会放在之后单独分析。数据驱动还有一部分是数据更新驱动视图变化,这一块内容我们也会在之后分析

现在我们的目标是弄清楚模板和数据如何渲染成最终的 DOM

new Vue()发生了什么

从入口代码开始分析,我们先来分析 new Vue 背后发生了哪些事情。
我们都知道,new 关键字在 Javascript 语言中代表实例化是一个对象,而 Vue 实际上是一个类,类在 Javascript 中是用 Function 来实现的,来看一下源码,在src/core/instance/index.js 中。

这里看源码思路: 重点看new Vue整体主流程,
然后看initState()方法,重点看里面的initData()的过程
initData()里的getData中的pushTarget()方法先不看,后面响应式原理的部分再仔细看
我们能通过this.message去访问data选项里定义的message,是通过proxy(vm, _data, key)方法实现
observe()方法也先不看,跟响应式相关,后面再看

src\core\instance\index.js

function Vue (options) {
  if (process.env.NODE_ENV !== 'production' &&
    !(this instanceof Vue)
  ) {
    warn('Vue is a constructor and should be called with the `new` keyword')
  }
  this._init(options)
}

可以看到 Vue 只能通过 new 关键字初始化,然后会调用 this._init 方法, 该方法在 src/core/instance/init.js 中定义。

src/core/instance/init.js

Vue.prototype._init = function (options?: Object) {
  const vm: Component = this
  // a uid
  vm._uid = uid++

  let startTag, endTag
  /* istanbul ignore if */
  if (process.env.NODE_ENV !== 'production' && config.performance && mark) {
    startTag = `vue-perf-start:${vm._uid}`
    endTag = `vue-perf-end:${vm._uid}`
    mark(startTag)
  }

  // a flag to avoid this being observed
  vm._isVue = true
  // merge options
  if (options && options._isComponent) {
    // optimize internal component instantiation
    // since dynamic options merging is pretty slow, and none of the
    // internal component options needs special treatment.
    initInternalComponent(vm, options)
  } else {
  // vm.$options不少人在项目中用到 具体从这里来
    vm.$options = mergeOptions(
      resolveConstructorOptions(vm.constructor),
      options || {},
      vm
    )
  }
  /* istanbul ignore else */
  if (process.env.NODE_ENV !== 'production') {
    initProxy(vm)
  } else {
    vm._renderProxy = vm
  }
  // expose real self
  vm._self = vm
  initLifecycle(vm)
  initEvents(vm)
  initRender(vm)
  callHook(vm, 'beforeCreate')
  initInjections(vm) // resolve injections before data/props
  initState(vm)
  initProvide(vm) // resolve provide after data/props
  callHook(vm, 'created')

  /* istanbul ignore if */
  if (process.env.NODE_ENV !== 'production' && config.performance && mark) {
    vm._name = formatComponentName(vm, false)
    mark(endTag)
    measure(`vue ${vm._name} init`, startTag, endTag)
  }

  if (vm.$options.el) {
    vm.$mount(vm.$options.el)
  }
}

Vue 初始化主要就干了几件事情,合并配置初始化生命周期初始化事件中心初始化渲染初始化 data、props、computed、watcher 等等。

总结-new Vue()

Vue 的初始化逻辑写的非常清楚,把不同的功能逻辑拆成一些单独的函数执行,让主线逻辑一目了然,这样的编程思想是非常值得借鉴和学习的。

由于我们这一章的目标是弄清楚模板和数据如何渲染成最终的 DOM,所以各种初始化逻辑我们先不看。在初始化的最后,检测到如果有 el 属性,则调用 vm.$mount 方法挂载 vm,挂载的目标就是把模板渲染成最终的 DOM,那么接下来我们来分析 Vue 的挂载过程。

Vue实例挂载的实现

Vue 中我们是通过$mount 实例方法去挂载 vm 的,$mount方法在多个文件中都有定义,如src/platform/web/entry-runtime-with-compiler.jssrc/platform/web/runtime/index.jssrc/platform/weex/runtime/index.js。因为 $mount这个方法的实现和平台、构建方式都相关的。

接下来我们重点分析带 compiler 版本的 $mount 实现,因为抛开 webpack 的 vue-loader,我们在纯前端浏览器环境分析 Vue 的工作原理,有助于我们对原理理解的深入。

这里看源码思路: 重点看vm.$amount()方法的主要流程,不细看各个方法实现
首先是对做解析,返回dom对象,
接着判断有没有render方法,没有的话,会拿到template,最终通过编译得到render()方法,编译过程这里先不看,后面会专门讲
重点分析mountComponent方法,vm._render()方法和vm._update()方法这里先粗略看看,后面会专门讲解

compiler 版本的 $mount 实现非常有意思,先来看一下 src/platform/web/entry-runtime-with-compiler.js文件中定义:

const mount = Vue.prototype.$mount
Vue.prototype.$mount = function (
  el?: string | Element,
  hydrating?: boolean
): Component {
  el = el && query(el)

  /* istanbul ignore if */
  if (el === document.body || el === document.documentElement) {
    process.env.NODE_ENV !== 'production' && warn(
      `Do not mount Vue to  or  - mount to normal elements instead.`
    )
    return this
  }

  const options = this.$options
  // resolve template/el and convert to render function
  if (!options.render) {
    let template = options.template
    if (template) {
      if (typeof template === 'string') {
        if (template.charAt(0) === '#') {
          template = idToTemplate(template)
          /* istanbul ignore if */
          if (process.env.NODE_ENV !== 'production' && !template) {
            warn(
              `Template element not found or is empty: ${options.template}`,
              this
            )
          }
        }
      } else if (template.nodeType) {
        template = template.innerHTML
      } else {
        if (process.env.NODE_ENV !== 'production') {
          warn('invalid template option:' + template, this)
        }
        return this
      }
    } else if (el) {
      template = getOuterHTML(el)
    }
    if (template) {
      /* istanbul ignore if */
      if (process.env.NODE_ENV !== 'production' && config.performance && mark) {
        mark('compile')
      }

      const { render, staticRenderFns } = compileToFunctions(template, {
        shouldDecodeNewlines,
        shouldDecodeNewlinesForHref,
        delimiters: options.delimiters,
        comments: options.comments
      }, this)
      options.render = render
      options.staticRenderFns = staticRenderFns

      /* istanbul ignore if */
      if (process.env.NODE_ENV !== 'production' && config.performance && mark) {
        mark('compile end')
        measure(`vue ${this._name} compile`, 'compile', 'compile end')
      }
    }
  }
  return mount.call(this, el, hydrating)
}

这段代码首先缓存了原型上的$mount方法,再重新定义该方法,我们先来分析这段代码。首先,它对 el 做了限制,Vue 不能挂载在 body、html 这样的根节点上
接下来的是很关键的逻辑 —— 如果没有定义 render 方法,则会把 el 或者 template 字符串转换成 render 方法。这里我们要牢记,在 Vue 2.0 版本中,所有 Vue 的组件的渲染最终都需要 render 方法,无论我们是用单文件 .vue 方式开发组件,还是写了 el 或者 template 属性,最终都会转换成 render 方法,那么这个过程是 Vue 的一个“在线编译”的过程,它是调用 compileToFunctions方法实现的,编译过程我们之后会介绍。最后,调用原先原型上的 $mount 方法挂载。

原先原型上的 $mount 方法在 src/platform/web/runtime/index.js 中定义,之所以这么设计完全是为了复用,因为它是可以被runtime only版本的 Vue 直接使用的。

// public mount method
Vue.prototype.$mount = function (
  el?: string | Element,
  hydrating?: boolean
): Component {
  el = el && inBrowser ? query(el) : undefined
  return mountComponent(this, el, hydrating)
}

$mount方法支持传入 2 个参数,第一个是 el,它表示挂载的元素,可以是字符串,也可以是 DOM 对象,如果是字符串在浏览器环境下会调用 query 方法转换成 DOM 对象的。第二个参数是和服务端渲染相关,在浏览器环境下我们不需要传第二个参数。

$mount方法实际上会去调用mountComponent方法,这个方法定义在 src/core/instance/lifecycle.js文件中:

export function mountComponent (
  vm: Component,
  el: ?Element,
  hydrating?: boolean
): Component {
  vm.$el = el
  if (!vm.$options.render) {
    vm.$options.render = createEmptyVNode
    if (process.env.NODE_ENV !== 'production') {
      /* istanbul ignore if */
      if ((vm.$options.template && vm.$options.template.charAt(0) !== '#') ||
        vm.$options.el || el) {
        warn(
          'You are using the runtime-only build of Vue where the template ' +
          'compiler is not available. Either pre-compile the templates into ' +
          'render functions, or use the compiler-included build.',
          vm
        )
      } else {
        warn(
          'Failed to mount component: template or render function not defined.',
          vm
        )
      }
    }
  }
  callHook(vm, 'beforeMount')

  let updateComponent
  /* istanbul ignore if */
  if (process.env.NODE_ENV !== 'production' && config.performance && mark) {
    updateComponent = () => {
      const name = vm._name
      const id = vm._uid
      const startTag = `vue-perf-start:${id}`
      const endTag = `vue-perf-end:${id}`

      mark(startTag)
      const vnode = vm._render()
      mark(endTag)
      measure(`vue ${name} render`, startTag, endTag)

      mark(startTag)
      vm._update(vnode, hydrating)
      mark(endTag)
      measure(`vue ${name} patch`, startTag, endTag)
    }
  } else {
    updateComponent = () => {
      vm._update(vm._render(), hydrating)
    }
  }

  // we set this to vm._watcher inside the watcher's constructor
  // since the watcher's initial patch may call $forceUpdate (e.g. inside child
  // component's mounted hook), which relies on vm._watcher being already defined
  new Watcher(vm, updateComponent, noop, {
    before () {
      if (vm._isMounted) {
        callHook(vm, 'beforeUpdate')
      }
    }
  }, true /* isRenderWatcher */)
  hydrating = false

  // manually mounted instance, call mounted on self
  // mounted is called for render-created child components in its inserted hook
  if (vm.$vnode == null) {
    vm._isMounted = true
    callHook(vm, 'mounted')
  }
  return vm
}

从上面的代码可以看到,mountComponent核心就是先实例化一个渲染Watcher,在它的回调函数中会调用updateComponent方法,在此方法中调用vm._render方法先生成虚拟 Node,最终调用vm._update 更新 DOM

Watcher在这里起到两个作用,一个是初始化的时候会执行回调函数,另一个是当 vm 实例中的监测的数据发生变化的时候执行回调函数,这块儿我们会在之后的章节中介绍。

函数最后判断为根节点的时候设置vm._isMounted 为 true, 表示这个实例已经挂载了,同时执行 mounted 钩子函数
这里注意vm.$vnode 表示 Vue 实例的父虚拟 Node,所以它为 Null 则表示当前是根 Vue 的实例。

总结-Vue实例挂载的实现

mountComponent方法的逻辑也是非常清晰的,它会完成整个渲染工作,接下来我们要重点分析其中的细节,也就是最核心的 2 个方法:vm._rendervm._update

render

Vue 的 _render 方法是实例的一个私有方法,它用来把实例渲染成一个虚拟 Node。它的定义在 src/core/instance/render.js 文件中:

Vue.prototype._render = function (): VNode {
  const vm: Component = this
  const { render, _parentVnode } = vm.$options

  // reset _rendered flag on slots for duplicate slot check
  if (process.env.NODE_ENV !== 'production') {
    for (const key in vm.$slots) {
      // $flow-disable-line
      vm.$slots[key]._rendered = false
    }
  }

  if (_parentVnode) {
    vm.$scopedSlots = _parentVnode.data.scopedSlots || emptyObject
  }

  // set parent vnode. this allows render functions to have access
  // to the data on the placeholder node.
  vm.$vnode = _parentVnode
  // render self
  let vnode
  try {
    vnode = render.call(vm._renderProxy, vm.$createElement)
  } catch (e) {
    handleError(e, vm, `render`)
    // return error render result,
    // or previous vnode to prevent render error causing blank component
    /* istanbul ignore else */
    if (process.env.NODE_ENV !== 'production') {
      if (vm.$options.renderError) {
        try {
          vnode = vm.$options.renderError.call(vm._renderProxy, vm.$createElement, e)
        } catch (e) {
          handleError(e, vm, `renderError`)
          vnode = vm._vnode
        }
      } else {
        vnode = vm._vnode
      }
    } else {
      vnode = vm._vnode
    }
  }
  // return empty vnode in case the render function errored out
  if (!(vnode instanceof VNode)) {
    if (process.env.NODE_ENV !== 'production' && Array.isArray(vnode)) {
      warn(
        'Multiple root nodes returned from render function. Render function ' +
        'should return a single root node.',
        vm
      )
    }
    vnode = createEmptyVNode()
  }
  // set parent
  vnode.parent = _parentVnode
  return vnode
}

这段代码最关键的是 render 方法的调用,我们在平时的开发工作中手写 render 方法的场景比较少,而写的比较多的是 template 模板,在之前的 mounted 方法的实现中,会把 template 编译成 render 方法,但这个编译过程是非常复杂的,我们不打算在这里展开讲,之后会专门花一个章节来分析 Vue 的编译过程。

在 Vue 的官方文档中介绍了 render 函数的第一个参数是 createElement,那么结合之前的例子:

<div id="app">
  {{ message }}
</div>

相当于我们编写如下 render 函数:

new Vue({
  el: "#app",
  render(createElement) {
    return createElement(
      "div",
      {
        attrs: {
          id: "app"
        }
      },
      this.message
    );
  },
  data: {
    message: "hello vue"
  }
});

再回到 _render 函数中的 render 方法的调用:

vnode = render.call(vm._renderProxy, vm.$createElement)

可以看到,render 函数中的 createElement 方法就是 vm.$createElement 方法:

export function initRender (vm: Component) {
  // ...
  // bind the createElement fn to this instance
  // so that we get proper render context inside it.
  // args order: tag, data, children, normalizationType, alwaysNormalize
  // internal version is used by render functions compiled from templates
  vm._c = (a, b, c, d) => createElement(vm, a, b, c, d, false)
  // normalization is always applied for the public version, used in
  // user-written render functions.
  vm.$createElement = (a, b, c, d) => createElement(vm, a, b, c, d, true)
}

实际上,vm. c r e a t e E l e m e n t 方 法 定 义 是 在 执 行 i n i t R e n d e r 方 法 的 时 候 , 可 以 看 到 除 了 v m . createElement 方法定义是在执行 initRender 方法的时候,可以看到除了 vm. createElementinitRendervm.createElement 方法,还有一个 vm._c 方法,它是被模板编译成的 render 函数使用,而 vm.$createElement 是用户手写 render 方法使用的, 这俩个方法支持的参数相同,并且内部都调用了 createElement 方法。

总结-render

vm._render 最终是通过执行 createElement 方法并返回的是 vnode,它是一个虚拟 Node。Vue 2.0 相比 Vue 1.0 最大的升级就是利用了 Virtual DOM。因此在分析 createElement 的实现前,我们先了解一下 Virtual DOM 的概念。

Virtual DOM

Virtual DOM 这个概念相信大部分人都不会陌生,它产生的前提是浏览器中的 DOM 是很“昂贵"的,为了更直观的感受,我们可以简单的把一个简单的 div 元素的属性都打印出来,如图所示:
Vue源码学习(持续更新中)_第2张图片
可以看到,真正的 DOM 元素是非常庞大的,因为浏览器的标准就把 DOM 设计的非常复杂。当我们频繁的去做 DOM 更新,会产生一定的性能问题。

而 Virtual DOM 就是用一个原生的 JS 对象去描述一个 DOM 节点,所以它比创建一个 DOM 的代价要小很多。在 Vue.js 中,Virtual DOM 是用 VNode 这么一个 Class 去描述,它是定义在 src/core/vdom/vnode.js 中的。

export default class VNode {
  tag: string | void;
  data: VNodeData | void;
  children: ?Array<VNode>;
  text: string | void;
  elm: Node | void;
  ns: string | void;
  context: Component | void; // rendered in this component's scope
  key: string | number | void;
  componentOptions: VNodeComponentOptions | void;
  componentInstance: Component | void; // component instance
  parent: VNode | void; // component placeholder node

  // strictly internal
  raw: boolean; // contains raw HTML? (server only)
  isStatic: boolean; // hoisted static node
  isRootInsert: boolean; // necessary for enter transition check
  isComment: boolean; // empty comment placeholder?
  isCloned: boolean; // is a cloned node?
  isOnce: boolean; // is a v-once node?
  asyncFactory: Function | void; // async component factory function
  asyncMeta: Object | void;
  isAsyncPlaceholder: boolean;
  ssrContext: Object | void;
  fnContext: Component | void; // real context vm for functional nodes
  fnOptions: ?ComponentOptions; // for SSR caching
  fnScopeId: ?string; // functional scope id support

  constructor (
    tag?: string,
    data?: VNodeData,
    children?: ?Array<VNode>,
    text?: string,
    elm?: Node,
    context?: Component,
    componentOptions?: VNodeComponentOptions,
    asyncFactory?: Function
  ) {
    this.tag = tag
    this.data = data
    this.children = children
    this.text = text
    this.elm = elm
    this.ns = undefined
    this.context = context
    this.fnContext = undefined
    this.fnOptions = undefined
    this.fnScopeId = undefined
    this.key = data && data.key
    this.componentOptions = componentOptions
    this.componentInstance = undefined
    this.parent = undefined
    this.raw = false
    this.isStatic = false
    this.isRootInsert = true
    this.isComment = false
    this.isCloned = false
    this.isOnce = false
    this.asyncFactory = asyncFactory
    this.asyncMeta = undefined
    this.isAsyncPlaceholder = false
  }

  // DEPRECATED: alias for componentInstance for backwards compat.
  /* istanbul ignore next */
  get child (): Component | void {
    return this.componentInstance
  }
}

可以看到 Vue.js 中的 Virtual DOM 的定义还是略微复杂一些的,因为它这里包含了很多 Vue.js 的特性。这里千万不要被这些茫茫多的属性吓到,实际上 Vue.js 中 Virtual DOM 是借鉴了一个开源库 snabbdom 的实现,然后加入了一些 Vue.js 特色的东西。我建议大家如果想深入了解 Vue.js 的 Virtual DOM 前不妨先阅读这个库的源码,因为它更加简单和纯粹。

总结-Virtual DOM

其实 VNode 是对真实 DOM 的一种抽象描述,它的核心定义无非就几个关键属性,标签名、数据、子节点、键值等,其它属性都是用来扩展 VNode 的灵活性以及实现一些特殊 feature 的。由于 VNode 只是用来映射到真实 DOM 的渲染,不需要包含操作 DOM 的方法,因此它是非常轻量和简单的。

Virtual DOM 除了它的数据结构的定义,映射到真实的 DOM 实际上要经历 VNode 的 create、diff、patch 等过程。那么在 Vue.js 中,VNode 的 create 是通过之前提到的 createElement 方法创建的,我们接下来分析这部分的实现。

createElement

Vue.js 利用 createElement 方法创建 VNode,它定义在 src/core/vdom/create-elemenet.js 中:

// wrapper function for providing a more flexible interface
// without getting yelled at by flow
export function createElement (
  context: Component,
  tag: any,
  data: any,
  children: any,
  normalizationType: any,
  alwaysNormalize: boolean
): VNode | Array<VNode> {
  if (Array.isArray(data) || isPrimitive(data)) {
    normalizationType = children
    children = data
    data = undefined
  }
  if (isTrue(alwaysNormalize)) {
    normalizationType = ALWAYS_NORMALIZE
  }
  return _createElement(context, tag, data, children, normalizationType)
}

createElement方法实际上是对_createElement方法的封装,它允许传入的参数更加灵活,在处理这些参数后,调用真正创建 VNode 的函数 _createElement

export function _createElement (
  context: Component,
  tag?: string | Class<Component> | Function | Object,
  data?: VNodeData,
  children?: any,
  normalizationType?: number
): VNode | Array<VNode> {
  if (isDef(data) && isDef((data: any).__ob__)) {
    process.env.NODE_ENV !== 'production' && warn(
      `Avoid using observed data object as vnode data: ${JSON.stringify(data)}\n` +
      'Always create fresh vnode data objects in each render!',
      context
    )
    return createEmptyVNode()
  }
  // object syntax in v-bind
  if (isDef(data) && isDef(data.is)) {
    tag = data.is
  }
  if (!tag) {
    // in case of component :is set to falsy value
    return createEmptyVNode()
  }
  // warn against non-primitive key
  if (process.env.NODE_ENV !== 'production' &&
    isDef(data) && isDef(data.key) && !isPrimitive(data.key)
  ) {
    if (!__WEEX__ || !('@binding' in data.key)) {
      warn(
        'Avoid using non-primitive value as key, ' +
        'use string/number value instead.',
        context
      )
    }
  }
  // support single function children as default scoped slot
  if (Array.isArray(children) &&
    typeof children[0] === 'function'
  ) {
    data = data || {}
    data.scopedSlots = { default: children[0] }
    children.length = 0
  }
  if (normalizationType === ALWAYS_NORMALIZE) {
    children = normalizeChildren(children)
  } else if (normalizationType === SIMPLE_NORMALIZE) {
    children = simpleNormalizeChildren(children)
  }
  let vnode, ns
  if (typeof tag === 'string') {
    let Ctor
    ns = (context.$vnode && context.$vnode.ns) || config.getTagNamespace(tag)
    if (config.isReservedTag(tag)) {
      // platform built-in elements
      vnode = new VNode(
        config.parsePlatformTagName(tag), data, children,
        undefined, undefined, context
      )
    } else if (isDef(Ctor = resolveAsset(context.$options, 'components', tag))) {
      // component
      vnode = createComponent(Ctor, data, context, children, tag)
    } else {
      // unknown or unlisted namespaced elements
      // check at runtime because it may get assigned a namespace when its
      // parent normalizes children
      vnode = new VNode(
        tag, data, children,
        undefined, undefined, context
      )
    }
  } else {
    // direct component options / constructor
    vnode = createComponent(tag, data, context, children)
  }
  if (Array.isArray(vnode)) {
    return vnode
  } else if (isDef(vnode)) {
    if (isDef(ns)) applyNS(vnode, ns)
    if (isDef(data)) registerDeepBindings(data)
    return vnode
  } else {
    return createEmptyVNode()
  }
}

_createElement 方法有 5 个参数,

  • context表示 VNode的上下文环境,它是 Component 类型;
  • tag表示标签,它可以是一个字符串,也可以是一个 Component;
  • data表示 VNode 的数据,它是一个 VNodeData 类型,可以在 mermaid flowchat/vnode.js中找到它的定义,这里先不展开说;
  • children表示当前 VNode 的子节点,它是任意类型的,它接下来需要被规范为标准的 VNode 数组
  • normalizationType表示子节点规范的类型,类型不同规范的方法也就不一样,它主要是参考 render 函数编译生成的还是用户手写的。

createElement 函数的流程略微有点多,我们接下来主要分析 2 个重点的流程—— children 的规范化以及VNode 的创建

children 的规范化

由于 Virtual DOM实际上是一个树状结构,每一个 VNode 可能会有若干个子节点,这些子节点应该也是 VNode 的类型。
_createElement接收的第 4 个参数 children 是任意类型的,因此我们需要把它们规范成VNode 类型

这里根据 normalizationType的不同,调用了 normalizeChildren(children)simpleNormalizeChildren(children)方法,它们的定义都在 src/core/vdom/helpers/normalzie-children.js中:

// The template compiler attempts to minimize the need for normalization by
// statically analyzing the template at compile time.
//
// For plain HTML markup, normalization can be completely skipped because the
// generated render function is guaranteed to return Array. There are
// two cases where extra normalization is needed:

// 1. When the children contains components - because a functional component
// may return an Array instead of a single root. In this case, just a simple
// normalization is needed - if any child is an Array, we flatten the whole
// thing with Array.prototype.concat. It is guaranteed to be only 1-level deep
// because functional components already normalize their own children.
export function simpleNormalizeChildren (children: any) {
  for (let i = 0; i < children.length; i++) {
    if (Array.isArray(children[i])) {
      return Array.prototype.concat.apply([], children)
    }
  }
  return children
}

// 2. When the children contains constructs that always generated nested Arrays,
// e.g.