- scala基础学习(数据类型)-集合
百流
scalascala学习开发语言
文章目录集合创建集合isEmpty获取数据添加元素删除元素常见方法交集&差集diff--并集++uniontostringtolisttoArraytoMap其余常用方法集合ScalaSet(集合)是没有重复的对象集合,所有的元素都是唯一的。Scala集合分为可变的和不可变的集合。默认情况下,Scala使用的是不可变集合,如果你想使用可变集合,需要引用scala.collection.mutabl
- 基于RBF神经网络的在线学习算法
fanxbl957
人工智能理论与实践神经网络学习算法
基于RBF神经网络的在线学习算法一、引言随着信息技术的飞速发展,数据的产生速度日益加快,传统的批量学习算法在处理大规模、实时更新的数据时面临着诸多挑战。在线学习算法作为一种可以实时更新模型的学习方式,逐渐受到广泛关注。RBF(径向基函数)神经网络作为一种强大的神经网络模型,以其良好的函数逼近能力和非线性处理能力,为在线学习提供了一种有效的工具。本文将深入探讨基于RBF神经网络的在线学习算法,包括其
- # AI计算模式 神经网络模型 深度神经网络 多层感知机 卷积神经网络 循环神经网络 长短期记忆网络 图像识别、语音识别、自然语言 轻量化模型和模型压缩 大模型分布式并行
EwenWanW
AGI人工智能神经网络dnn
AI计算模式AI技术发展至今,主流的模型是深度神经网络模型。近20年来,神经网络模型经过多样化的发展,模型总体变得越来越复杂和庞大,对硬件设备的计算速度、存储能力、通信速度的要求越来越高。尽管学者已经提出了许多方法优化模型结构,降低模型的参数量,但是伴随着人们对AI能力的要求越来越高,模型变得更大是不可避免的。原先单CPU可进行模型的训练与推理,如今需要使用GPU、TPU等设备,并通过分布式并行的
- 多层感知机和神经网络的区别_情感分析之多层全连接神经网络
weixin_39653766
多层感知机和神经网络的区别
全连接神经网络全连接神经网络是一种最基本的神经网络结构,英文为FullConnection,所以一般简称FC。FC的准则很简单:神经网络中除输入层之外的每个节点都和上一层的所有节点有连接。上图是一个双隐层的前馈全连接神经网络,或者叫多层感知机(MLP)。它的每个隐层都是全连接层。它的每一个单元叫神经元。多层感知机在单层神经网络的基础上引入了一到多个隐藏层(hiddenlayer)。隐藏层位于输入层
- AAAI2024论文解读|Memory-Efficient Reversible Spiking Neural Networks-water-merged
paixiaoxin
文献阅读论文合集脉冲神经网络可逆架构内存效率深度学习训练优化AAAI
论文标题Memory-EfficientReversibleSpikingNeuralNetworks内存高效可逆脉冲神经网络论文链接Memory-EfficientReversibleSpikingNeuralNetworks论文下载论文作者HongZhang,YuZhang内容简介本文提出了一种可逆脉冲神经网络(RevSNN),旨在降低脉冲神经网络(SNNs)在训练过程中对中间激活和膜电位的内
- 深入详解神经网络的基础知识、工作原理以及应用【一】
猿享天开
人工智能基础知识学习深度学习神经网络人工智能
目录引言1.神经网络基础1.1感知器模型1.2多层感知器(MLP)示例:2.前馈神经网络(FeedforwardNeuralNetworks,FFNN)2.1结构与特点2.2训练过程2.3优化方法3.卷积神经网络(CNN)3.1基本概念3.2层类型3.3网络架构3.4应用领域3.5示例代码示例描述:4.循环神经网络(RNN)4.1基本概念4.2RNN结构4.3应用领域4.4示例代码示例描述:5.深
- 李开复:苹果发布AI应用的未来
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
苹果,AI,应用,未来,深度学习,自然语言处理,计算机视觉1.背景介绍近年来,人工智能(AI)技术取得了飞速发展,并开始渗透到人们生活的方方面面。从智能手机的语音助手到自动驾驶汽车,AI正在改变着我们的世界。作为科技巨头,苹果也积极布局AI领域,并将其融入到其产品和服务中。2017年,苹果发布了其首款AI芯片A11Bionic,并将其应用于iPhoneX等产品。该芯片拥有强大的神经网络处理能力,为
- 使用 Spring AI 调用本地 模型实现
drebander
AI编程springjavaspringAI
在本篇博客中,我们将学习如何使用SpringAI框架调用本地的PyTorch模型,并通过SpringBoot提供一个预测接口。SpringAI是一个用于将人工智能应用集成到Spring生态系统中的框架,它支持多种AI模型和数据源的集成,帮助开发者将AI模型无缝地集成到Java应用中。1.准备PyTorch模型首先,我们需要训练并保存一个PyTorch模型。这里我们使用一个简单的神经网络模型作为示例
- AI需要的基础数学知识
大囚长
机器学习大模型人工智能
AI(人工智能)涉及多个数学领域,以下是主要的基础数学知识:1.线性代数矩阵与向量:用于表示数据和模型参数。矩阵乘法:用于神经网络的前向传播。特征值与特征向量:用于降维和主成分分析(PCA)。奇异值分解(SVD):用于数据压缩和降维。2.微积分导数与偏导数:用于优化算法(如梯度下降)。链式法则:用于反向传播算法。积分:在概率和统计中有应用。3.概率与统计概率分布:如高斯分布、伯努利分布等。贝叶斯定
- 云游戏一二事
大囚长
运维人生游戏世界游戏
云游戏让CDN边缘计算加速发展,边缘计算节点越来越类似于神经网络的终端节点,AI人类大脑正在加速形成。云游戏就是元宇宙的前站和先锋。云游戏解决了哪些痛点:1.终端成本高玩家购买高端主机设备来适应游戏不断提升的硬件要求,极大程度地加重了玩家成本2.游戏包越来越大,下载安装成本高游戏画面越来越精细的同时也带来了不断膨胀的游戏包体,给游戏存储与推广都带来了更大的压力和成本3.游戏无法在多种终端间自由切换
- 使用神经网络做二分类预测
weixin_33816300
人工智能pythonmatlab
不想整理代码了。先给个结果图:train0loss:1838.0616train100loss:1441.5283train200loss:1299.4546train300loss:934.36536train400loss:506.06702train500loss:322.9782train600loss:271.5825train700loss:360.091train800loss:23
- Neural Architecture Search (NAS) 原理和应用
weixin_58349913
python
NeuralArchitectureSearch(NAS)原理和应用NeuralArchitectureSearch(NAS)是一种自动化设计神经网络架构的技术。它通过搜索空间中的不同架构配置来找到最优或接近最优的神经网络结构,从而减少人工设计网络结构的工作量。NAS的目标是通过自动化的方式获得比手工设计更高效、准确的模型架构,特别适用于对网络架构要求较高的任务。1.NAS的基本原理NAS的核心思
- 模型压缩与优化技术——神经架构搜索(Neural Architecture Search, NAS)
DuHz
轻量化模型机器学习计算机视觉人工智能神经网络深度学习数据挖掘语音识别
模型压缩与优化技术中的神经架构搜索(NeuralArchitectureSearch,NAS)技术1.引言在深度学习领域,神经网络的架构设计对模型的性能至关重要。传统的手动设计网络架构的过程费时费力,且通常依赖于经验和直觉。为了提升效率与效果,神经架构搜索(NeuralArchitectureSearch,NAS)作为一种自动化的方法,能够通过算法寻找和优化最佳的神经网络架构。NAS可以在图像识别
- 【揭秘】图像算法工程师岗位如何进入?
认识祂
人工智能算法图像算法工程师
“图像算法工程师,主要专注于开发图像处理和计算机视觉算法,广泛应用于各行业。本文,我们来揭秘一下他们的日常工作,以及如何成为这一领域的专业人才。”01图像算法工程师的日常工作算法设计与开发图像算法工程师的核心任务是设计和开发算法,以解决特定的图像处理或计算机视觉问题。常见的任务包括:图像分类:使用卷积神经网络(CNN)对图像进行分类,常见算法如ResNet、VGG。目标检测:在图像中定位并标注物体
- Python 编译Edge-TTS(edge_tts)转MP3工具
浩读语音朗读
edge-ttspythonedge自然语言处理前端
Python编译Edge-TTS利用PIPEdge-tts库来实现Azure神经网络自然语音转MP3,这应该是微软给老百姓们一个共享前沿科技大餐。(edge_tts)找了网上的很多源代,现在利用现有公开的代码混编译一个个人的学习工具。代码仅供学习研究。fromtkinterimport*fromtkinter.filedialogimport*fromtkinter.messageboximpor
- 深度学习|表示学习|卷积神经网络|局部链接是什么?|06
漂亮_大男孩
表示学习深度学习学习cnn
如是我闻:局部连接(LocalConnectivity),是卷积神经网络(CNN)中的一个关键特性。什么是局部连接(LocalConnectivity)?局部连接指的是:在卷积操作中,每个神经元(或输出单元)只与输入数据的一个局部区域相关联,而不是与整个输入数据相连。换句话说:全连接网络(FullyConnectedLayer)中,每个神经元会与上一层所有的神经元相连。卷积网络(Convoluti
- 机器学习算法(八):基于BP神经网络的乳腺癌的分类预测
墨枣
机器学习算法神经网络分类人工智能
机器学习算法(八):基于BP神经网络的乳腺癌的分类预测本项目链接:https://www.heywhale.com/home/column/64141d6b1c8c8b518ba97dcc1.算法简介和应用1.1算法简介BP(BackPropagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经
- python 随机数 随机种子
AI算法网奇
python宝典python开发语言后端
目录神经网络推理随机种子gpu新版:神经网络推理随机种子gpu:神经网络推理随机种子含npu:numpy.full创建相同矩阵python生成n个随机整数python随机数种子,每次获取相同的随机数随机在区间M内取不重复的N个随机数取一个范围内均匀不重复的随机数神经网络推理随机种子gpu新版:defset_random_seed(seed):"""Setrandomseeds."""random.
- Transformer架构原理详解:多头注意力(MultiHead Attention)
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
Transformer,多头注意力,Multi-HeadAttention,机器翻译,自然语言处理,深度学习1.背景介绍近年来,深度学习在自然语言处理(NLP)领域取得了显著进展。传统的循环神经网络(RNN)在处理长序列数据时存在效率低下和梯度消失等问题。为了解决这些问题,谷歌于2017年提出了Transformer架构,并将其应用于机器翻译任务,取得了突破性的成果。Transformer的核心创
- 人类大脑与大规模神经网络的对比及未来展望
东方佑
量子变法神经网络人工智能深度学习
引言随着人工智能(AI)技术的迅猛发展,研究人员不断尝试构建更加复杂和强大的模型,以期实现与人类大脑相媲美的智能水平。本文将探讨当前大规模神经网络(LLM,LargeLanguageModels)的发展现状,并基于现有数据对未来进行预测。特别地,我们将分析达到人类大脑突触连接规模所需的时间框架、可能面临的挑战以及使用转义词表技术所带来的优势。人类大脑的基本结构人类大脑是一个极其复杂的系统,包含大约
- 深度学习模型开发文档
Ares代码行者
深度学习
深度学习模型开发文档1.简介2.深度学习模型开发流程3.数据准备3.1数据加载3.2数据可视化4.构建卷积神经网络(CNN)5.模型训练5.1定义损失函数和优化器5.2训练过程6.模型评估与优化6.1模型评估6.2超参数调优7.模型部署8.总结参考资料1.简介深度学习是人工智能的一个分支,利用多层神经网络从数据中提取特征并进行学习。它被广泛应用于图像识别、自然语言处理、语音识别等领域。本文将以构建
- 联邦学习中客户端发送的梯度是vector而不是tensor
wzx_Eleven
联邦学习机器学习网络安全人工智能
在联邦学习中,当本地使用神经网络或深度学习模型时,训练的梯度通常是与模型参数(权重和偏置)相对应的梯度数据。具体来说,梯度的类型和形状取决于模型的结构(例如,卷积神经网络、全连接网络等),以及模型的层数、每层的神经元数量等因素。1.梯度类型:梯度是一个张量:在神经网络中,梯度通常是一个张量(tensor),每一层的梯度张量的形状和该层的权重形状相匹配。具体来说,梯度是损失函数对每个参数的偏导数,表
- conv2former模型详解及代码复现
清风AI
深度学习算法详解及代码复现深度学习人工智能python神经网络conda
模型背景在Conv2Former模型提出之前,视觉识别领域的研究主要集中在两个方向:传统卷积神经网络(ConvNets)新兴的视觉Transformer(ViTs)ConvNets通过堆叠基本模块和采用金字塔结构取得了显著进展,但往往忽略了全局上下文信息的显式建模。ViTs则通过自注意力机制有效捕捉全局依赖关系,在多个视觉任务中展现出优异性能。然而,ViTs在处理高分辨率图像时面临计算成本过高的问
- Python中实现多层感知机(MLP)的深度学习模型
Echo_Wish
Python笔记从零开始学Python人工智能python深度学习开发语言
深度学习已经成为机器学习领域的一个热门话题,而多层感知机(MLP)是最基础的深度学习模型之一。在这篇教程中,我将向你展示如何使用Python来实现一个简单的MLP模型。什么是多层感知机(MLP)?多层感知机(MLP)是一种前馈神经网络,它包含一个输入层、一个或多个隐藏层以及一个输出层。每个层都由一系列的神经元组成,神经元之间通过权重连接。MLP能够学习输入数据的非线性特征,因此在复杂问题的建模中非
- AI Agent:深度解析与未来展望
码事漫谈
c++人工智能
一、AIAgent的前世:从概念到萌芽(一)早期探索AIAgent的概念可以追溯到20世纪50年代,早期的AI研究主要集中在简单的规则系统上,这些系统的行为是确定性的,输出由输入决定。随着时间的推移,AI逐渐能够处理不确定性,1990年代机器学习的兴起为AIAgent的发展奠定了基础,神经网络技术的突破为深度学习的发展提供了可能。(二)技术突破2017年后,大语言模型(LLM)的出现推动了AIAg
- 【深度学习基础】线性神经网络 | softmax回归的简洁实现
Francek Chen
PyTorch深度学习深度学习神经网络回归softmax人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈PyTorch深度学习⌋⌋⌋深度学习(DL,DeepLearning)特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据
- 【人工智能】Python常用库-Keras:高阶深度学习 API
IT古董
深度学习人工智能Python人工智能python深度学习
Keras:高阶深度学习APIKeras是一个高效、用户友好的深度学习框架,作为TensorFlow的高级API,支持快速构建和训练深度学习模型。它以模块化、简单和灵活著称,适合研究和生产环境。Keras的发音为[ˈkerəs],类似于“凯拉斯”或“克拉斯”。这个名字来源于希腊语κέρας(kéras),意思是“角”或“角质物”。这个词与深度学习的灵感来源——大脑的神经网络结构有一定联系。Kera
- DCGAN - 深度卷积生成对抗网络:基于卷积神经网络的GAN
池央
生成对抗网络cnn深度学习
深度卷积生成对抗网络(DCGAN,DeepConvolutionalGenerativeAdversarialNetwork)是生成对抗网络(GAN)的一种扩展,它通过使用卷积神经网络(CNN)来实现生成器和判别器的构建。与标准的GAN相比,DCGAN通过引入卷积层来改善图像生成质量,使得生成器能够生成更清晰、更高分辨率的图像。DCGAN提出了一种通过卷积结构来提高图像生成效果的策略,并在多个领域
- 深度学习从入门到精通:全面指南
AI天才研究院
计算大数据AI人工智能AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《深度学习从入门到精通:全面指南》文章目录《深度学习从入门到精通:全面指南》文章关键词文章摘要引言第一部分:深度学习基础入门第1章:深度学习概述1.1深度学习的基本概念1.2深度学习的发展历程1.3深度学习的基本原理神经网络前向传播反向传播第2章:深度学习框架入门2.1TensorFlow入门TensorFlow环境搭建TensorFlow基本数据结构2.2PyTorch入门PyTorch环境搭建
- 【深度学习】Pytorch:在 ResNet 中加入注意力机制
T0uken
深度学习pytorch人工智能
在这篇教程中,我们将介绍如何在ResNet网络中加入注意力机制模块。我们将通过对标准ResNet50进行改进,向网络中添加两个自定义的注意力模块,并展示如何实现这一过程。为什么要加入注意力机制注意力机制可以帮助神经网络专注于图像中重要的特征区域,从而提高模型的性能。在卷积神经网络中,加入注意力机制能够有效增强特征提取能力,减少冗余信息的干扰,尤其在处理复杂图像时,能够提升网络的表现。在本教程中,我
- 对于规范和实现,你会混淆吗?
yangshangchuan
HotSpot
昨晚和朋友聊天,喝了点咖啡,由于我经常喝茶,很长时间没喝咖啡了,所以失眠了,于是起床读JVM规范,读完后在朋友圈发了一条信息:
JVM Run-Time Data Areas:The Java Virtual Machine defines various run-time data areas that are used during execution of a program. So
- android 网络
百合不是茶
网络
android的网络编程和java的一样没什么好分析的都是一些死的照着写就可以了,所以记录下来 方便查找 , 服务器使用的是TomCat
服务器代码; servlet的使用需要在xml中注册
package servlet;
import java.io.IOException;
import java.util.Arr
- [读书笔记]读法拉第传
comsci
读书笔记
1831年的时候,一年可以赚到1000英镑的人..应该很少的...
要成为一个科学家,没有足够的资金支持,很多实验都无法完成
但是当钱赚够了以后....就不能够一直在商业和市场中徘徊......
- 随机数的产生
沐刃青蛟
随机数
c++中阐述随机数的方法有两种:
一是产生假随机数(不管操作多少次,所产生的数都不会改变)
这类随机数是使用了默认的种子值产生的,所以每次都是一样的。
//默认种子
for (int i = 0; i < 5; i++)
{
cout<<
- PHP检测函数所在的文件名
IT独行者
PHP函数
很简单的功能,用到PHP中的反射机制,具体使用的是ReflectionFunction类,可以获取指定函数所在PHP脚本中的具体位置。 创建引用脚本。
代码:
[php]
view plain
copy
// Filename: functions.php
<?php&nbs
- 银行各系统功能简介
文强chu
金融
银行各系统功能简介 业务系统 核心业务系统 业务功能包括:总账管理、卡系统管理、客户信息管理、额度控管、存款、贷款、资金业务、国际结算、支付结算、对外接口等 清分清算系统 以清算日期为准,将账务类交易、非账务类交易的手续费、代理费、网络服务费等相关费用,按费用类型计算应收、应付金额,经过清算人员确认后上送核心系统完成结算的过程 国际结算系
- Python学习1(pip django 安装以及第一个project)
小桔子
pythondjangopip
最近开始学习python,要安装个pip的工具。听说这个工具很强大,安装了它,在安装第三方工具的话so easy!然后也下载了,按照别人给的教程开始安装,奶奶的怎么也安装不上!
第一步:官方下载pip-1.5.6.tar.gz, https://pypi.python.org/pypi/pip easy!
第二部:解压这个压缩文件,会看到一个setup.p
- php 数组
aichenglong
PHP排序数组循环多维数组
1 php中的创建数组
$product = array('tires','oil','spark');//array()实际上是语言结构而不 是函数
2 如果需要创建一个升序的排列的数字保存在一个数组中,可以使用range()函数来自动创建数组
$numbers=range(1,10)//1 2 3 4 5 6 7 8 9 10
$numbers=range(1,10,
- 安装python2.7
AILIKES
python
安装python2.7
1、下载可从 http://www.python.org/进行下载#wget https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz
2、复制解压
#mkdir -p /opt/usr/python
#cp /opt/soft/Python-2
- java异常的处理探讨
百合不是茶
JAVA异常
//java异常
/*
1,了解java 中的异常处理机制,有三种操作
a,声明异常
b,抛出异常
c,捕获异常
2,学会使用try-catch-finally来处理异常
3,学会如何声明异常和抛出异常
4,学会创建自己的异常
*/
//2,学会使用try-catch-finally来处理异常
- getElementsByName实例
bijian1013
element
实例1:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/x
- 探索JUnit4扩展:Runner
bijian1013
java单元测试JUnit
参加敏捷培训时,教练提到Junit4的Runner和Rule,于是特上网查一下,发现很多都讲的太理论,或者是举的例子实在是太牵强。多搜索了几下,搜索到两篇我觉得写的非常好的文章。
文章地址:http://www.blogjava.net/jiangshachina/archive/20
- [MongoDB学习笔记二]MongoDB副本集
bit1129
mongodb
1. 副本集的特性
1)一台主服务器(Primary),多台从服务器(Secondary)
2)Primary挂了之后,从服务器自动完成从它们之中选举一台服务器作为主服务器,继续工作,这就解决了单点故障,因此,在这种情况下,MongoDB集群能够继续工作
3)挂了的主服务器恢复到集群中只能以Secondary服务器的角色加入进来
2
- 【Spark八十一】Hive in the spark assembly
bit1129
assembly
Spark SQL supports most commonly used features of HiveQL. However, different HiveQL statements are executed in different manners:
1. DDL statements (e.g. CREATE TABLE, DROP TABLE, etc.)
- Nginx问题定位之监控进程异常退出
ronin47
nginx在运行过程中是否稳定,是否有异常退出过?这里总结几项平时会用到的小技巧。
1. 在error.log中查看是否有signal项,如果有,看看signal是多少。
比如,这是一个异常退出的情况:
$grep signal error.log
2012/12/24 16:39:56 [alert] 13661#0: worker process 13666 exited on s
- No grammar constraints (DTD or XML schema).....两种解决方法
byalias
xml
方法一:常用方法 关闭XML验证
工具栏:windows => preferences => xml => xml files => validation => Indicate when no grammar is specified:选择Ignore即可。
方法二:(个人推荐)
添加 内容如下
<?xml version=
- Netty源码学习-DefaultChannelPipeline
bylijinnan
netty
package com.ljn.channel;
/**
* ChannelPipeline采用的是Intercepting Filter 模式
* 但由于用到两个双向链表和内部类,这个模式看起来不是那么明显,需要仔细查看调用过程才发现
*
* 下面对ChannelPipeline作一个模拟,只模拟关键代码:
*/
public class Pipeline {
- MYSQL数据库常用备份及恢复语句
chicony
mysql
备份MySQL数据库的命令,可以加选不同的参数选项来实现不同格式的要求。
mysqldump -h主机 -u用户名 -p密码 数据库名 > 文件
备份MySQL数据库为带删除表的格式,能够让该备份覆盖已有数据库而不需要手动删除原有数据库。
mysqldump -–add-drop-table -uusername -ppassword databasename > ba
- 小白谈谈云计算--基于Google三大论文
CrazyMizzz
Google云计算GFS
之前在没有接触到云计算之前,只是对云计算有一点点模糊的概念,觉得这是一个很高大上的东西,似乎离我们大一的还很远。后来有机会上了一节云计算的普及课程吧,并且在之前的一周里拜读了谷歌三大论文。不敢说理解,至少囫囵吞枣啃下了一大堆看不明白的理论。现在就简单聊聊我对于云计算的了解。
我先说说GFS
&n
- hadoop 平衡空间设置方法
daizj
hadoopbalancer
在hdfs-site.xml中增加设置balance的带宽,默认只有1M:
<property>
<name>dfs.balance.bandwidthPerSec</name>
<value>10485760</value>
<description&g
- Eclipse程序员要掌握的常用快捷键
dcj3sjt126com
编程
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可以那么勤奋,每天都孜孜不倦得
- Android学习之路
dcj3sjt126com
Android学习
转自:http://blog.csdn.net/ryantang03/article/details/6901459
以前有J2EE基础,接触JAVA也有两三年的时间了,上手Android并不困难,思维上稍微转变一下就可以很快适应。以前做的都是WEB项目,现今体验移动终端项目,让我越来越觉得移动互联网应用是未来的主宰。
下面说说我学习Android的感受,我学Android首先是看MARS的视
- java 遍历Map的四种方法
eksliang
javaHashMapjava 遍历Map的四种方法
转载请出自出处:
http://eksliang.iteye.com/blog/2059996
package com.ickes;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
/**
* 遍历Map的四种方式
- 【精典】数据库相关相关
gengzg
数据库
package C3P0;
import java.sql.Connection;
import java.sql.SQLException;
import java.beans.PropertyVetoException;
import com.mchange.v2.c3p0.ComboPooledDataSource;
public class DBPool{
- 自动补全
huyana_town
自动补全
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml&quo
- jquery在线预览PDF文件,打开PDF文件
天梯梦
jquery
最主要的是使用到了一个jquery的插件jquery.media.js,使用这个插件就很容易实现了。
核心代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
- ViewPager刷新单个页面的方法
lovelease
androidviewpagertag刷新
使用ViewPager做滑动切换图片的效果时,如果图片是从网络下载的,那么再子线程中下载完图片时我们会使用handler通知UI线程,然后UI线程就可以调用mViewPager.getAdapter().notifyDataSetChanged()进行页面的刷新,但是viewpager不同于listview,你会发现单纯的调用notifyDataSetChanged()并不能刷新页面
- 利用按位取反(~)从复合枚举值里清除枚举值
草料场
enum
以 C# 中的 System.Drawing.FontStyle 为例。
如果需要同时有多种效果,
如:“粗体”和“下划线”的效果,可以用按位或(|)
FontStyle style = FontStyle.Bold | FontStyle.Underline;
如果需要去除 style 里的某一种效果,
- Linux系统新手学习的11点建议
刘星宇
编程工作linux脚本
随着Linux应用的扩展许多朋友开始接触Linux,根据学习Windwos的经验往往有一些茫然的感觉:不知从何处开始学起。这里介绍学习Linux的一些建议。
一、从基础开始:常常有些朋友在Linux论坛问一些问题,不过,其中大多数的问题都是很基础的。例如:为什么我使用一个命令的时候,系统告诉我找不到该目录,我要如何限制使用者的权限等问题,这些问题其实都不是很难的,只要了解了 Linu
- hibernate dao层应用之HibernateDaoSupport二次封装
wangzhezichuan
DAOHibernate
/**
* <p>方法描述:sql语句查询 返回List<Class> </p>
* <p>方法备注: Class 只能是自定义类 </p>
* @param calzz
* @param sql
* @return
* <p>创建人:王川</p>
* <p>创建时间:Jul