矩阵特征值线性无关证明

设满秩矩阵 A 的特征值为 λ 1 , λ 2 , . . . , λ n \lambda_1, \lambda_2, ..., \lambda_n λ1,λ2,...,λn(满足约束条件 λ 1 ≠ λ 2 ≠ . . . ≠ λ n \lambda_1 \ne \lambda_2 \ne ... \ne \lambda_n λ1̸=λ2̸=...̸=λn),对应特征向量为 x 1 , x 2 , . . . , x n x_1, x_2, ..., x_n x1,x2,...,xn。假设前 n − 1 n - 1 n1 个特征向量线性无关,第 n n n 个特征向量与前 n n n 个特征向量线性相关,即
k 1 x 1 + k 2 x 2 + . . . + k n x n = 0 k_1x_1+k_2x_2+...+k_nx_n = 0 k1x1+k2x2+...+knxn=0
等式两边同时乘以矩阵 A,有
A k 1 x 1 + A k 2 x 2 + . . . + A k n x n = 0 Ak_1x_1 + Ak_2x_2 + ... + Ak_nx_n = 0 Ak1x1+Ak2x2+...+Aknxn=0

λ 1 k 1 x 1 + λ 2 k 2 x 2 + . . . + λ n k n x n = 0 \lambda_1k_1x_1 + \lambda_2k_2x_2 + ... + \lambda_nk_nx_n = 0 λ1k1x1+λ2k2x2+...+λnknxn=0
而因为
k n x n = − k 1 x 1 − k 2 x 2 − . . . − k n − 1 x n − 1 k_nx_n = - k_1x_1 - k_2x_2 - ... - k_{n-1}x_{n-1} knxn=k1x1k2x2...kn1xn1
带入可得
( λ 1 − λ n ) k 1 x 1 + ( λ 2 − λ n ) k 2 x 2 + . . . + ( λ n − 1 − λ n ) k n − 1 x n − 1 = 0 (\lambda_1 - \lambda_n)k_1x_1 + (\lambda_2 - \lambda_n)k_2x_2 + ... + (\lambda_{n-1} - \lambda_n)k_{n-1}x_{n-1} = 0 (λ1λn)k1x1+(λ2λn)k2x2+...+(λn1λn)kn1xn1=0
因为前 n n n 个特征向量线性无关,因此,若上式成立,必定有
λ 1 − λ n = λ 2 − λ n = . . . = λ n − 1 − λ n = 0 \lambda _1 - \lambda_n = \lambda _2 - \lambda_n = ... = \lambda _{n-1} - \lambda_n = 0 λ1λn=λ2λn=...=λn1λn=0

λ 1 = λ 2 = . . . = λ n \lambda_1 = \lambda_2 = ... = \lambda_n λ1=λ2=...=λn
与假设不符,证毕。

你可能感兴趣的:(数学)