给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。
请你找出这两个正序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1 和 nums2 不会同时为空。
nums1 = [1, 3] nums2 = [2] 则中位数是 2.0
nums1 = [1, 2] nums2 = [3, 4] 则中位数是 (2 + 3)/2 = 2.5
给定两个有序数组,要求找到两个有序数组的中位数,最直观的思路有以下两种:
假设两个有序数组的长度分别为 m 和 n,上述两种思路的复杂度如何?
第一种思路的时间复杂度是 O(m+n),空间复杂度是 O(m+n)。第二种思路虽然可以将空间复杂度降到 O(1),但是时间复杂度仍是 O(m+n)。题目要求时间复杂度是 O(log(m+n)),因此上述两种思路都不满足题目要求的时间复杂度。
如何把时间复杂度降低到 O(log(m+n)) 呢?如果对时间复杂度的要求有 log,通常都需要用到二分查找,这道题也可以通过二分查找实现。
根据中位数的定义,当 m+n 是奇数时,中位数是两个有序数组中的第 (m+n)/2 个元素,当 m+n 是偶数时,中位数是两个有序数组中的第 (m+n)/2 个元素和第 (m+n)/2+1 个元素的平均值。因此,这道题可以转化成寻找两个有序数组中的第 k 小的数,其中 k 为 (m+n)/2 或 (m+n)/2+1。
假设两个有序数组分别是 A 和 B。要找到第 k 个元素,我们可以比较 A[k/2−1] 和 B[k/2−1],其中 / 表示整数除法。由于 A[k/2−1] 和 B[k/2−1] 的前面分别有 A[0..k/2−2] 和 B[0..k/2−2],即 k/2−1 个元素,对于 A[k/2−1] 和 B[k/2−1] 中的较小值,最多只会有 (k/2−1)+(k/2−1)≤k/2−2 个元素比它小,那么它就不能是第 k 小的数了。
因此我们可以归纳出三种情况:
可以看到,比较 A[k/2−1] 和B[k/2−1] 之后,可以排除 k/2 个不可能是第 k 小的数,查找范围缩小了一半。同时,我们将在排除后的新数组上继续进行二分查找,并且根据我们排除数的个数,减少 k 的值,这是因为我们排除的数都不大于第 k 小的数。
有以下三种情况需要特殊处理:
用一个例子说明上述算法。假设两个有序数组如下:
A: 1 3 4 9
B: 1 2 3 4 5 6 7 8 9
两个有序数组的长度分别是 4 和 9,长度之和是 13,中位数是两个有序数组中的第 7 个元素,因此需要找到第k=7 个元素。
比较两个有序数组中下标为 k/2−1=2 的数,即 A[2] 和 B[2],如下面所示:
A: 1 3 4 9
↑
B: 1 2 3 4 5 6 7 8 9
↑
由于 A[2]>B[2],因此排除 B[0] 到 B[2],即数组 B 的下标偏移(offset)变为 3,同时更新 k 的值:k=k−k/2=4。
下一步寻找,比较两个有序数组中下标为 k/2−1=1 的数,即 A[1] 和 B[4],如下面所示,其中方括号部分表示已经被排除的数。
A: 1 3 4 9
↑
B: [1 2 3] 4 5 6 7 8 9
↑
由于 A[1]
下一步寻找,比较两个有序数组中下标为 k/2−1=0 的数,即比较 A[2] 和 B[3],如下面所示,其中方括号部分表示已经被排除的数。
A: [1 3] 4 9
↑
B: [1 2 3] 4 5 6 7 8 9
↑
由于 A[2]=B[3],根据之前的规则,排除 A 中的元素,因此排除 A[2],即数组 A 的下标偏移变为 3,同时更新 k 的值:k=k−k/2=1。
由于 k 的值变成 1,因此比较两个有序数组中的未排除下标范围内的第一个数,其中较小的数即为第 k 个数,由于 A[3]>B[3],因此第 k 个数是 B[3]=4。
A: [1 3 4] 9
↑
B: [1 2 3] 4 5 6 7 8 9
↑
class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int length1 = nums1.length, length2 = nums2.length;
int totalLength = length1 + length2;
if (totalLength % 2 == 1) {
int midIndex = totalLength / 2;
double median = getKthElement(nums1, nums2, midIndex + 1);
return median;
} else {
int midIndex1 = totalLength / 2 - 1, midIndex2 = totalLength / 2;
double median = (getKthElement(nums1, nums2, midIndex1 + 1) + getKthElement(nums1, nums2, midIndex2 + 1)) / 2.0;
return median;
}
}
public int getKthElement(int[] nums1, int[] nums2, int k) {
/* 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较
* 这里的 "/" 表示整除
* nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个
* nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个
* 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个
* 这样 pivot 本身最大也只能是第 k-1 小的元素
* 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组
* 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组
* 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数
*/
int length1 = nums1.length, length2 = nums2.length;
int index1 = 0, index2 = 0;
int kthElement = 0;
while (true) {
// 边界情况
if (index1 == length1) {
return nums2[index2 + k - 1];
}
if (index2 == length2) {
return nums1[index1 + k - 1];
}
if (k == 1) {
return Math.min(nums1[index1], nums2[index2]);
}
// 正常情况
int half = k / 2;
int newIndex1 = Math.min(index1 + half, length1) - 1;
int newIndex2 = Math.min(index2 + half, length2) - 1;
int pivot1 = nums1[newIndex1], pivot2 = nums2[newIndex2];
if (pivot1 <= pivot2) {
k -= (newIndex1 - index1 + 1);
index1 = newIndex1 + 1;
} else {
k -= (newIndex2 - index2 + 1);
index2 = newIndex2 + 1;
}
}
}
}
为了使用划分的方法解决这个问题,需要理解「中位数的作用是什么」。在统计中,中位数被用来:
将一个集合划分为两个长度相等的子集,其中一个子集中的元素总是大于另一个子集中的元素。
如果理解了中位数的划分作用,就很接近答案了。
首先,在任意位置 i 将 A 划分成两个部分:
left_A | right_A
A[0], A[1], ..., A[i-1] | A[i], A[i+1], ..., A[m-1]
由于 A 中有 m 个元素, 所以有 m+1 种划分的方法(i∈[0,m])。
len(left_A)=i,len(right_A)=m−i.
注意:当 i = 0 时,left_A 为空集, 而当 i=m 时, right_A 为空集。
采用同样的方式,在任意位置 j 将 B 划分成两个部分:
left_B | right_B
B[0], B[1], ..., B[j-1] | B[j], B[j+1], ..., B[n-1]
将 left_A 和 left_B 放入一个集合,并将 right_A 和 right_B 放入另一个集合。 再把这两个新的集合分别命名为 left_part 和 right_part:
left_part | right_part
A[0], A[1], ..., A[i-1] | A[i], A[i+1], ..., A[m-1]
B[0], B[1], ..., B[j-1] | B[j], B[j+1], ..., B[n-1]
当 A 和 B 的总长度是偶数时,如果可以确认:
- len(left_part)=len(right_part)
- max(left_part)≤min(right_part)
那么,{A,B} 中的所有元素已经被划分为相同长度的两个部分,且前一部分中的元素总是小于或等于后一部分中的元素。中位数就是前一部分的最大值和后一部分的最小值的平均值:
median= (max(left_part)+min(right_part)) / 2
当 A 和 }B 的总长度是奇数时,如果可以确认:
- len(left_part)=len(right_part)+1
- max(left_part)≤min(right_part)
那么,{A,B} 中的所有元素已经被划分为两个部分,前一部分比后一部分多一个元素,且前一部分中的元素总是小于或等于后一部分中的元素。中位数就是前一部分的最大值:
median=max(left_part)
第一个条件对于总长度是偶数和奇数的情况有所不同,但是可以将两种情况合并。第二个条件对于总长度是偶数和奇数的情况是一样的。
要确保这两个条件,只需要保证:
a. 如果 A 的长度较大,那么我们只要交换 A 和 B 即可。
b. 如果 m>n ,那么得出的 j 有可能是负数。
为了简化分析,假设 A[i−1],B[j−1],A[i],B[j] 总是存在。对于 i=0、i=m、j=0、j=n 这样的临界条件,我们只需要规定 A[−1]=B[−1]=−∞,A[m]=B[n]=∞ 即可。这也是比较直观的:当一个数组不出现在前一部分时,对应的值为负无穷,就不会对前一部分的最大值产生影响;当一个数组不出现在后一部分时,对应的值为正无穷,就不会对后一部分的最小值产生影响。
所以我们需要做的是:
在 [0,m] 中找到 i,使得:
B[j−1]≤A[i] 且 A[i−1]≤B[j],其中 j= (m+n+1)/2−i
我们证明它等价于:
在 [0,m] 中找到最大的 i,使得:
A[i−1]≤B[j],其中 j= (m+n+1)/2 −i
这是因为:
因此我们可以对 i 在 [0,m] 的区间上进行二分搜索,找到最大的满足A[i−1]≤B[j] 的 i 值,就得到了划分的方法。此时,划分前一部分元素中的最大值,以及划分后一部分元素中的最小值,才可能作为就是这两个数组的中位数。
class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
if (nums1.length > nums2.length) {
return findMedianSortedArrays(nums2, nums1);
}
int m = nums1.length;
int n = nums2.length;
int left = 0, right = m;
// median1:前一部分的最大值
// median2:后一部分的最小值
int median1 = 0, median2 = 0;
while (left <= right) {
// 前一部分包含 nums1[0 .. i-1] 和 nums2[0 .. j-1]
// 后一部分包含 nums1[i .. m-1] 和 nums2[j .. n-1]
int i = (left + right) / 2;
int j = (m + n + 1) / 2 - i;
// nums_im1, nums_i, nums_jm1, nums_j 分别表示 nums1[i-1], nums1[i], nums2[j-1], nums2[j]
int nums_im1 = (i == 0 ? Integer.MIN_VALUE : nums1[i - 1]);
int nums_i = (i == m ? Integer.MAX_VALUE : nums1[i]);
int nums_jm1 = (j == 0 ? Integer.MIN_VALUE : nums2[j - 1]);
int nums_j = (j == n ? Integer.MAX_VALUE : nums2[j]);
if (nums_im1 <= nums_j) {
median1 = Math.max(nums_im1, nums_jm1);
median2 = Math.min(nums_i, nums_j);
left = i + 1;
}
else {
right = i - 1;
}
}
return (m + n) % 2 == 0 ? (median1 + median2) / 2.0 : median1;
}
}