pyflink table同时作为写出及输入的demo

在flink内部定义一个表g_unit(初始为空),接受一个kafka源的写入,同时g_unit又要作为下游表g_summary的输入源

from pyflink.datastream import StreamExecutionEnvironment, TimeCharacteristic, CheckpointingMode
from pyflink.table import StreamTableEnvironment, EnvironmentSettings



env = StreamExecutionEnvironment.get_execution_environment()
env.set_stream_time_characteristic(TimeCharacteristic.EventTime)
env.set_parallelism(1)
env_settings = EnvironmentSettings.new_instance().use_blink_planner().in_streaming_mode().build()
t_env = StreamTableEnvironment.create(env, environment_settings=env_settings)



kafka_source_ddl = """
CREATE TABLE kafka_source_tab (
id VARCHAR,
alarm_id VARCHAR,
trck_id VARCHAR
) WITH (
 'connector' = 'kafka',
 'topic' = 'gg',   
 'scan.startup.mode' = 'specific-offsets', 
 'scan.startup.specific-offsets'='partition:1,offset:0',
 'properties.bootstrap.servers' = '****',
 'format' = 'json'
)
"""
g_unit_sink_ddl = """
CREATE TABLE g_sink_unit (
 alarm_id VARCHAR,   
 trck_id VARCHAR
) WITH (
 'connector' = 'jdbc',
 'url' = 'jdbc:mysql://10.2.2.70:3306/bdoa?useSSL=false',
 'table-name' = 'g_unit',   
 'username' = 'root',
 'password' = 'root',
 'sink.buffer-flush.interval' = '1s'     
)
"""
g_summary_ddl = """
CREATE TABLE g_summary_base(
 alarm_id VARCHAR,   
 trck_id VARCHAR
) WITH (
 'connector' = 'jdbc',
 'url' = 'jdbc:mysql://10.2.2.70:3306/bdoa?useSSL=false',
 'table-name' = 'g_summary', 
 'username' = 'root',
 'password' = 'root',
 'sink.buffer-flush.interval' = '1s'
)
"""

t_env.execute_sql(kafka_source_ddl)
t_env.execute_sql(g_unit_sink_ddl)
t_env.execute_sql(g_summary_ddl)


sql1='''Insert into g_sink_unit select alarm_id,trck_id from kafka_source_tab'''
sql2='''Insert into g_summary_base select alarm_id,trck_id from g_sink_unit '''



stmt_set = t_env.create_statement_set()
stmt_set.add_insert_sql(sql1)
stmt_set.add_insert_sql(sql2)

# 阻塞式启动任务
stmt_set.execute().get_job_client().get_job_execution_result().result()

你可能感兴趣的:(Flink)