Spark SQL(9)-Spark SQL JOIN操作源码总结

Spark SQL(9)-Spark SQL JOIN操作源码总结

本文主要总结下spark sql join操作的实现,本文会根据spark sql 的源码来总结其具体的实现;大体流程还是从sql语句到逻辑算子树再到analyzed-> optimized -> 物理计划及其处理逻辑进行大致的总结。

Join逻辑算子树

先来一个sql:

SELECT NAME FROM NAME LEFT 
JOIN NAME2 ON NAME = NAME
JOIN NAME3 ON NAME = NAME

这条sql形成的逻辑算子树为:

Spark SQL(9)-Spark SQL JOIN操作源码总结_第1张图片

上图的树结构的生成;主要关注join部分就可以;其源码在AstBuilder中:

 override def visitFromClause(ctx: FromClauseContext): LogicalPlan = withOrigin(ctx) {
    val from = ctx.relation.asScala.foldLeft(null: LogicalPlan) { (left, relation) =>
      val right = plan(relation.relationPrimary)
      val join = right.optionalMap(left)(Join(_, _, Inner, None))
      withJoinRelations(join, relation)
    }
    ctx.lateralView.asScala.foldLeft(from)(withGenerate)
  }

  

  private def withJoinRelations(base: LogicalPlan, ctx: RelationContext): LogicalPlan = {
    val pp = ctx.joinRelation
    pp.asScala.foldLeft(base) { (left, join) =>
      withOrigin(join) {
        val baseJoinType = join.joinType match {
          case null => Inner
          case jt if jt.CROSS != null => Cross
          case jt if jt.FULL != null => FullOuter
          case jt if jt.SEMI != null => LeftSemi
          case jt if jt.ANTI != null => LeftAnti
          case jt if jt.LEFT != null => LeftOuter
          case jt if jt.RIGHT != null => RightOuter
          case _ => Inner
        }

        // Resolve the join type and join condition
        val (joinType, condition) = Option(join.joinCriteria) match {
          case Some(c) if c.USING != null =>
            (UsingJoin(baseJoinType, c.identifier.asScala.map(_.getText)), None)
          case Some(c) if c.booleanExpression != null =>
            (baseJoinType, Option(expression(c.booleanExpression)))
          case None if join.NATURAL != null =>
            if (baseJoinType == Cross) {
              throw new ParseException("NATURAL CROSS JOIN is not supported", ctx)
            }
            (NaturalJoin(baseJoinType), None)
          case None =>
            (baseJoinType, None)
        }
        Join(left, plan(join.right), joinType, condition)
      }
    }
  }

 从上图可以看出来对于join的操作,形成的树结构里面,保存的join关系是一个list,每个joinRelation包含了JoinType、relationPrimary以及joinCriteria;其中joinCriteria相当于是booleanExpression操作。

   之后就是Join Analyzed 以及optimized 操作,在这里俩步主要操作就是添加子查询别名等操作,之后在优化阶段算子下推、消除子查询别名等优化;这里面涉及的规则比较多,感兴趣的同学可以查看源码多研究研究;

物理计划阶段

    这一步主要涉及到 SparkPlanner 中配置的各种strategies,在这些策略中主要关注JoinSelection部分就行,他的apply方如下:

   def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match {

      // --- BroadcastHashJoin --------------------------------------------------------------------

      // broadcast hints were specified
      case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right)
        if canBroadcastByHints(joinType, left, right) =>
        val buildSide = broadcastSideByHints(joinType, left, right)
        Seq(joins.BroadcastHashJoinExec(
          leftKeys, rightKeys, joinType, buildSide, condition, planLater(left), planLater(right)))

      // broadcast hints were not specified, so need to infer it from size and configuration.
      case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right)
        if canBroadcastBySizes(joinType, left, right) =>
        val buildSide = broadcastSideBySizes(joinType, left, right)
        Seq(joins.BroadcastHashJoinExec(
          leftKeys, rightKeys, joinType, buildSide, condition, planLater(left), planLater(right)))

      // --- ShuffledHashJoin ---------------------------------------------------------------------

      case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right)
         if !conf.preferSortMergeJoin && canBuildRight(joinType) && canBuildLocalHashMap(right)
           && muchSmaller(right, left) ||
           !RowOrdering.isOrderable(leftKeys) =>
        Seq(joins.ShuffledHashJoinExec(
          leftKeys, rightKeys, joinType, BuildRight, condition, planLater(left), planLater(right)))

      case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right)
         if !conf.preferSortMergeJoin && canBuildLeft(joinType) && canBuildLocalHashMap(left)
           && muchSmaller(left, right) ||
           !RowOrdering.isOrderable(leftKeys) =>
        Seq(joins.ShuffledHashJoinExec(
          leftKeys, rightKeys, joinType, BuildLeft, condition, planLater(left), planLater(right)))

      // --- SortMergeJoin ------------------------------------------------------------

      case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right)
        if RowOrdering.isOrderable(leftKeys) =>
        joins.SortMergeJoinExec(
          leftKeys, rightKeys, joinType, condition, planLater(left), planLater(right)) :: Nil

      // --- Without joining keys ------------------------------------------------------------

      // Pick BroadcastNestedLoopJoin if one side could be broadcast
      case j @ logical.Join(left, right, joinType, condition)
          if canBroadcastByHints(joinType, left, right) =>
        val buildSide = broadcastSideByHints(joinType, left, right)
        joins.BroadcastNestedLoopJoinExec(
          planLater(left), planLater(right), buildSide, joinType, condition) :: Nil

      case j @ logical.Join(left, right, joinType, condition)
          if canBroadcastBySizes(joinType, left, right) =>
        val buildSide = broadcastSideBySizes(joinType, left, right)
        joins.BroadcastNestedLoopJoinExec(
          planLater(left), planLater(right), buildSide, joinType, condition) :: Nil

      // Pick CartesianProduct for InnerJoin
      case logical.Join(left, right, _: InnerLike, condition) =>
        joins.CartesianProductExec(planLater(left), planLater(right), condition) :: Nil

      case logical.Join(left, right, joinType, condition) =>
        val buildSide = broadcastSide(
          left.stats.hints.broadcast, right.stats.hints.broadcast, left, right)
        // This join could be very slow or OOM
        joins.BroadcastNestedLoopJoinExec(
          planLater(left), planLater(right), buildSide, joinType, condition) :: Nil

      // --- Cases where this strategy does not apply ---------------------------------------------

      case _ => Nil
    }
  }

  从上面的代码可以看出其根据不同的条件生成不同的join操作:BroadcastHashJoinExec、ShuffledHashJoinExec、SortMergeJoinExec、BroadcastNestedLoopJoinExec;

      在介绍在四个操作之前,先介绍下join操作实现的大体思想:

      假设有俩张表,在spark中进行操作的时候;

      一张表为流表;一张表为构建表;默认的大表为流表,小表为构建表;基于流表的迭代,然后和构建表进行匹配,生成join之后的行数据。其实可以想象一种极端情况;大表特别的大有几百万行数据,小表数据只有10行,这个时候只需要迭代遍历流表,然后去小表(构建表)去匹配数据,匹配到之后生成join完成之后的行;

      在spark中join的大体实现是分流表和构建表;基于这俩个角色来实现join操作。接下来简单介绍下上面的几种join操作:

      1、BroadcastHashJoinExec主要通过广播形式实现join操作;其生成的条件是:一种是标记了hint;并且可以创建构建右表或者构建左表;另外一种是小表小于配置的spark.sql.autoBroadcastJoinThreshold参数的大小,则会进行基于广播的join;这里面spark会先将构建表的数据拉倒driver端,之后再分发到各个worker节点,所以这一步如果构建表比较大的情况下对spark的driver节点来说可能会有压力。

      2、ShuffledHashJoinExec 通过shuffle之后在内存中保存join构建表来实现join操作;其生成的条件是:可以构建左表或者右表,其次表的大小小于分区数和配置的广播参数的乘积(保证可以加载到本地内存进行计算),并且打开了优先考虑基于hash join的开关、其次需要保证构建表足够小(构建表*3小于流表);其主要思想就是对流表进行迭代,之后和内存中的构建表数据匹配生成join之后的行数据。

      3、SortMergeJoinExec 通过shuffle操作之后进行排序,再然后进行基于排序的join操作;如果上述俩个都不满足的情况就会进行就排序的join(前提是可以排序);排序的join就是先对数据进行shuffle分区,保证相同的key分到相同的分区,之后进行排序操作,保证数据有序,之后进行merge join操作,同时读取流表和构建表;因为数据有序,所以只要顺序遍历流表和构建表;匹配生成join行数据就行

      4、BroadcastNestedLoopJoinExec 主要针对的是没有join条件的连接操作;暂时不做研究;

接下来主要总结下hashJoin和SortMergeJoinExec的实现逻辑;

      ShuffledHashJoinExec

      

  private def buildHashedRelation(iter: Iterator[InternalRow]): HashedRelation = {
    val buildDataSize = longMetric("buildDataSize")
    val buildTime = longMetric("buildTime")
    val start = System.nanoTime()
    val context = TaskContext.get()
    val relation = HashedRelation(iter, buildKeys, taskMemoryManager = context.taskMemoryManager())
    buildTime += (System.nanoTime() - start) / 1000000
    buildDataSize += relation.estimatedSize
    // This relation is usually used until the end of task.
    context.addTaskCompletionListener(_ => relation.close())
    relation
  }

  protected override def doExecute(): RDD[InternalRow] = {
    val numOutputRows = longMetric("numOutputRows")
    val avgHashProbe = longMetric("avgHashProbe")
    streamedPlan.execute().zipPartitions(buildPlan.execute()) { (streamIter, buildIter) =>
      val hashed = buildHashedRelation(buildIter)
      join(streamIter, hashed, numOutputRows, avgHashProbe)
    }
  }

  先看上面的doExecute方法,一般物理计划都是触发这个方法来执行的,这里主要的逻辑是调用了buildHashedRelation方法,在这个方法中主要关注HashedRelation就行:

private[execution] object HashedRelation {

  /**
   * Create a HashedRelation from an Iterator of InternalRow.
   */
  def apply(
      input: Iterator[InternalRow],
      key: Seq[Expression],
      sizeEstimate: Int = 64,
      taskMemoryManager: TaskMemoryManager = null): HashedRelation = {
    val mm = Option(taskMemoryManager).getOrElse {
      new TaskMemoryManager(
        new StaticMemoryManager(
          new SparkConf().set(MEMORY_OFFHEAP_ENABLED.key, "false"),
          Long.MaxValue,
          Long.MaxValue,
          1),
        0)
    }

    if (key.length == 1 && key.head.dataType == LongType) {
      LongHashedRelation(input, key, sizeEstimate, mm)
    } else {
      UnsafeHashedRelation(input, key, sizeEstimate, mm)
    }
  }
}

  这里面根据类型dataType如果是long那么就生成LongHashedRelation(基于LongToUnsafeRowMap实现),如果不是就是UnsafeHashedRelation(基于BytesToBytesMap实现)这里主要关注UnsafeHashedRelation就行:

private[joins] object UnsafeHashedRelation {

  def apply(
      input: Iterator[InternalRow],
      key: Seq[Expression],
      sizeEstimate: Int,
      taskMemoryManager: TaskMemoryManager): HashedRelation = {

    val pageSizeBytes = Option(SparkEnv.get).map(_.memoryManager.pageSizeBytes)
      .getOrElse(new SparkConf().getSizeAsBytes("spark.buffer.pageSize", "16m"))

    val binaryMap = new BytesToBytesMap(
      taskMemoryManager,
      // Only 70% of the slots can be used before growing, more capacity help to reduce collision
      (sizeEstimate * 1.5 + 1).toInt,
      pageSizeBytes,
      true)

    // Create a mapping of buildKeys -> rows
    val keyGenerator = UnsafeProjection.create(key)
    var numFields = 0
    while (input.hasNext) {
      val row = input.next().asInstanceOf[UnsafeRow]
      numFields = row.numFields()
      val key = keyGenerator(row)
      if (!key.anyNull) {
        val loc = binaryMap.lookup(key.getBaseObject, key.getBaseOffset, key.getSizeInBytes)
        val success = loc.append(
          key.getBaseObject, key.getBaseOffset, key.getSizeInBytes,
          row.getBaseObject, row.getBaseOffset, row.getSizeInBytes)
        if (!success) {
          binaryMap.free()
          throw new SparkException("There is no enough memory to build hash map")
        }
      }
    }

    new UnsafeHashedRelation(numFields, binaryMap)
  }

  从上面的代码可以看出,这里主要是根据从ShuffledHashJoinExec传过来的buildKeys,构建一个基于buildKeys和rows的映射表,其实就是上面提到的构建表。这里准备好构建表之后,回到上面提到的ShuffledHashJoinExec.doExecute中可以看到:

protected override def doExecute(): RDD[InternalRow] = {
    val numOutputRows = longMetric("numOutputRows")
    val avgHashProbe = longMetric("avgHashProbe")
    streamedPlan.execute().zipPartitions(buildPlan.execute()) { (streamIter, buildIter) =>
      val hashed = buildHashedRelation(buildIter)
      join(streamIter, hashed, numOutputRows, avgHashProbe)
    }
  }

  可以看到基于streamIter(流表)、hashed(构建表)构成了一个join操作:

  protected def join(
      streamedIter: Iterator[InternalRow],
      hashed: HashedRelation,
      numOutputRows: SQLMetric,
      avgHashProbe: SQLMetric): Iterator[InternalRow] = {

    val joinedIter = joinType match {
      case _: InnerLike =>
        innerJoin(streamedIter, hashed)
      case LeftOuter | RightOuter =>
        outerJoin(streamedIter, hashed)
      case LeftSemi =>
        semiJoin(streamedIter, hashed)
      case LeftAnti =>
        antiJoin(streamedIter, hashed)
      case j: ExistenceJoin =>
        existenceJoin(streamedIter, hashed)
      case x =>
        throw new IllegalArgumentException(
          s"BroadcastHashJoin should not take $x as the JoinType")
    }

    // At the end of the task, we update the avg hash probe.
    TaskContext.get().addTaskCompletionListener(_ =>
      avgHashProbe.set(hashed.getAverageProbesPerLookup))

    val resultProj = createResultProjection
    joinedIter.map { r =>
      numOutputRows += 1
      resultProj(r)
    }
  }

  这里可以看看innerJoin的操作:

 private def innerJoin(
      streamIter: Iterator[InternalRow],
      hashedRelation: HashedRelation): Iterator[InternalRow] = {
    val joinRow = new JoinedRow
    val joinKeys = streamSideKeyGenerator()
    streamIter.flatMap { srow =>
      joinRow.withLeft(srow)
      val matches = hashedRelation.get(joinKeys(srow))
      if (matches != null) {
        matches.map(joinRow.withRight(_)).filter(boundCondition)
      } else {
        Seq.empty
      }
    }
  }

   可以看出,遍历流表,从构建表获取相同的key,如果不为空就构建joinRow,并应用join的条件进行筛选。到这里整个hash join的实现就算是完成了。对于其他类型的join可以自己跟代码阅读。

     SortMergeJoinExec

      doExecute方法如下:

 protected override def doExecute(): RDD[InternalRow] = {
    val numOutputRows = longMetric("numOutputRows")
    val spillThreshold = getSpillThreshold
    val inMemoryThreshold = getInMemoryThreshold
    left.execute().zipPartitions(right.execute()) { (leftIter, rightIter) =>
      val boundCondition: (InternalRow) => Boolean = {
        condition.map { cond =>
          newPredicate(cond, left.output ++ right.output).eval _
        }.getOrElse {
          (r: InternalRow) => true
        }
      }

      // An ordering that can be used to compare keys from both sides.
      val keyOrdering = newNaturalAscendingOrdering(leftKeys.map(_.dataType))
      val resultProj: InternalRow => InternalRow = UnsafeProjection.create(output, output)

      joinType match {
        case _: InnerLike =>
          new RowIterator {
            private[this] var currentLeftRow: InternalRow = _
            private[this] var currentRightMatches: ExternalAppendOnlyUnsafeRowArray = _
            private[this] var rightMatchesIterator: Iterator[UnsafeRow] = null
            private[this] val smjScanner = new SortMergeJoinScanner(
              createLeftKeyGenerator(),
              createRightKeyGenerator(),
              keyOrdering,
              RowIterator.fromScala(leftIter),
              RowIterator.fromScala(rightIter),
              inMemoryThreshold,
              spillThreshold
            )
            private[this] val joinRow = new JoinedRow

            if (smjScanner.findNextInnerJoinRows()) {
              currentRightMatches = smjScanner.getBufferedMatches
              currentLeftRow = smjScanner.getStreamedRow
              rightMatchesIterator = currentRightMatches.generateIterator()
            }

            override def advanceNext(): Boolean = {
              while (rightMatchesIterator != null) {
                if (!rightMatchesIterator.hasNext) {
                  if (smjScanner.findNextInnerJoinRows()) {
                    currentRightMatches = smjScanner.getBufferedMatches
                    currentLeftRow = smjScanner.getStreamedRow
                    rightMatchesIterator = currentRightMatches.generateIterator()
                  } else {
                    currentRightMatches = null
                    currentLeftRow = null
                    rightMatchesIterator = null
                    return false
                  }
                }
                joinRow(currentLeftRow, rightMatchesIterator.next())
                if (boundCondition(joinRow)) {
                  numOutputRows += 1
                  return true
                }
              }
              false
            }

            override def getRow: InternalRow = resultProj(joinRow)
          }.toScala

        case LeftOuter =>
          val smjScanner = new SortMergeJoinScanner(
            streamedKeyGenerator = createLeftKeyGenerator(),
            bufferedKeyGenerator = createRightKeyGenerator(),
            keyOrdering,
            streamedIter = RowIterator.fromScala(leftIter),
            bufferedIter = RowIterator.fromScala(rightIter),
            inMemoryThreshold,
            spillThreshold
          )
          val rightNullRow = new GenericInternalRow(right.output.length)
          new LeftOuterIterator(
            smjScanner, rightNullRow, boundCondition, resultProj, numOutputRows).toScala

        case RightOuter =>
          val smjScanner = new SortMergeJoinScanner(
            streamedKeyGenerator = createRightKeyGenerator(),
            bufferedKeyGenerator = createLeftKeyGenerator(),
            keyOrdering,
            streamedIter = RowIterator.fromScala(rightIter),
            bufferedIter = RowIterator.fromScala(leftIter),
            inMemoryThreshold,
            spillThreshold
          )
          val leftNullRow = new GenericInternalRow(left.output.length)
          new RightOuterIterator(
            smjScanner, leftNullRow, boundCondition, resultProj, numOutputRows).toScala

        case FullOuter =>
          val leftNullRow = new GenericInternalRow(left.output.length)
          val rightNullRow = new GenericInternalRow(right.output.length)
          val smjScanner = new SortMergeFullOuterJoinScanner(
            leftKeyGenerator = createLeftKeyGenerator(),
            rightKeyGenerator = createRightKeyGenerator(),
            keyOrdering,
            leftIter = RowIterator.fromScala(leftIter),
            rightIter = RowIterator.fromScala(rightIter),
            boundCondition,
            leftNullRow,
            rightNullRow)

          new FullOuterIterator(
            smjScanner,
            resultProj,
            numOutputRows).toScala

        case LeftSemi =>
          new RowIterator {
            private[this] var currentLeftRow: InternalRow = _
            private[this] val smjScanner = new SortMergeJoinScanner(
              createLeftKeyGenerator(),
              createRightKeyGenerator(),
              keyOrdering,
              RowIterator.fromScala(leftIter),
              RowIterator.fromScala(rightIter),
              inMemoryThreshold,
              spillThreshold
            )
            private[this] val joinRow = new JoinedRow

            override def advanceNext(): Boolean = {
              while (smjScanner.findNextInnerJoinRows()) {
                val currentRightMatches = smjScanner.getBufferedMatches
                currentLeftRow = smjScanner.getStreamedRow
                if (currentRightMatches != null && currentRightMatches.length > 0) {
                  val rightMatchesIterator = currentRightMatches.generateIterator()
                  while (rightMatchesIterator.hasNext) {
                    joinRow(currentLeftRow, rightMatchesIterator.next())
                    if (boundCondition(joinRow)) {
                      numOutputRows += 1
                      return true
                    }
                  }
                }
              }
              false
            }

            override def getRow: InternalRow = currentLeftRow
          }.toScala

        case LeftAnti =>
          new RowIterator {
            private[this] var currentLeftRow: InternalRow = _
            private[this] val smjScanner = new SortMergeJoinScanner(
              createLeftKeyGenerator(),
              createRightKeyGenerator(),
              keyOrdering,
              RowIterator.fromScala(leftIter),
              RowIterator.fromScala(rightIter),
              inMemoryThreshold,
              spillThreshold
            )
            private[this] val joinRow = new JoinedRow

            override def advanceNext(): Boolean = {
              while (smjScanner.findNextOuterJoinRows()) {
                currentLeftRow = smjScanner.getStreamedRow
                val currentRightMatches = smjScanner.getBufferedMatches
                if (currentRightMatches == null || currentRightMatches.length == 0) {
                  numOutputRows += 1
                  return true
                }
                var found = false
                val rightMatchesIterator = currentRightMatches.generateIterator()
                while (!found && rightMatchesIterator.hasNext) {
                  joinRow(currentLeftRow, rightMatchesIterator.next())
                  if (boundCondition(joinRow)) {
                    found = true
                  }
                }
                if (!found) {
                  numOutputRows += 1
                  return true
                }
              }
              false
            }

            override def getRow: InternalRow = currentLeftRow
          }.toScala

        case j: ExistenceJoin =>
          new RowIterator {
            private[this] var currentLeftRow: InternalRow = _
            private[this] val result: InternalRow = new GenericInternalRow(Array[Any](null))
            private[this] val smjScanner = new SortMergeJoinScanner(
              createLeftKeyGenerator(),
              createRightKeyGenerator(),
              keyOrdering,
              RowIterator.fromScala(leftIter),
              RowIterator.fromScala(rightIter),
              inMemoryThreshold,
              spillThreshold
            )
            private[this] val joinRow = new JoinedRow

            override def advanceNext(): Boolean = {
              while (smjScanner.findNextOuterJoinRows()) {
                currentLeftRow = smjScanner.getStreamedRow
                val currentRightMatches = smjScanner.getBufferedMatches
                var found = false
                if (currentRightMatches != null && currentRightMatches.length > 0) {
                  val rightMatchesIterator = currentRightMatches.generateIterator()
                  while (!found && rightMatchesIterator.hasNext) {
                    joinRow(currentLeftRow, rightMatchesIterator.next())
                    if (boundCondition(joinRow)) {
                      found = true
                    }
                  }
                }
                result.setBoolean(0, found)
                numOutputRows += 1
                return true
              }
              false
            }

            override def getRow: InternalRow = resultProj(joinRow(currentLeftRow, result))
          }.toScala

        case x =>
          throw new IllegalArgumentException(
            s"SortMergeJoin should not take $x as the JoinType")
      }

    }
  }

      这里首先看下InnerLike分支下的实现:

           具体逻辑很简单:

           实例化了一个SortMergeJoinScanner,具体实现可以看实现的advanceNext方法,调用findNextInnerJoinRows找到下一行可以join的数据;这里面:

           1、currentLeftRow相当于是流表数据,触发是:smjScanner.getStreamedRow

           2、currentRightMatches相当于是构建表数据,触发是:smjScanner.getBufferedMatches

           3、advanceNext这里面主要就是findNextInnerJoinRows方法,如果返回true那么就是有新行,直接重置1、2的值,然后构建joinRow,之后再应用过滤条件

           4、findNextInnerJoinRows:

 final def findNextInnerJoinRows(): Boolean = {
    while (advancedStreamed() && streamedRowKey.anyNull) {
      // Advance the streamed side of the join until we find the next row whose join key contains
      // no nulls or we hit the end of the streamed iterator.
    }
    if (streamedRow == null) {
      // We have consumed the entire streamed iterator, so there can be no more matches.
      matchJoinKey = null
      bufferedMatches.clear()
      false
    } else if (matchJoinKey != null && keyOrdering.compare(streamedRowKey, matchJoinKey) == 0) {
      // The new streamed row has the same join key as the previous row, so return the same matches.
      true
    } else if (bufferedRow == null) {
      // The streamed row's join key does not match the current batch of buffered rows and there are
      // no more rows to read from the buffered iterator, so there can be no more matches.
      matchJoinKey = null
      bufferedMatches.clear()
      false
    } else {
      // Advance both the streamed and buffered iterators to find the next pair of matching rows.
      var comp = keyOrdering.compare(streamedRowKey, bufferedRowKey)
      do {
        if (streamedRowKey.anyNull) {
          advancedStreamed()
        } else {
          assert(!bufferedRowKey.anyNull)
          comp = keyOrdering.compare(streamedRowKey, bufferedRowKey)
          if (comp > 0) advancedBufferedToRowWithNullFreeJoinKey()
          else if (comp < 0) advancedStreamed()
        }
      } while (streamedRow != null && bufferedRow != null && comp != 0)
      if (streamedRow == null || bufferedRow == null) {
        // We have either hit the end of one of the iterators, so there can be no more matches.
        matchJoinKey = null
        bufferedMatches.clear()
        false
      } else {
        // The streamed row's join key matches the current buffered row's join, so walk through the
        // buffered iterator to buffer the rest of the matching rows.
        assert(comp == 0)
        bufferMatchingRows()
        true
      }
    }
  }

  主要逻辑如下:

      如果流表为空直接返回,

      如何流表的行可以和当前的缓存matchJoinKey对应上,则返回true;

      如果构建表为空,直接返回false;

      之后具体逻辑在do while中,首先还是校验;之后对流表和构建表数据的key进行比对,如果大于0;则重新拿构建表的数据,如果小于0,就拿流表的数据,如果不是就循环,直到俩个key相同,或者俩个表为空;之后会一直添加bufferedMatches(相当于对拥有同一个key的构建表数据进行append操作,加入bufferedMatches中);

      其次在bufferMatchingRows方法中记录了matchJoinKey,之后再调用findNextInnerJoinRows的时候,如果发现新的流表key和matchJoinKey相同直接返回true,进行join操作。

      关于LeftOuter和RightOuter主要实现是基于LeftOuterIterator和RightOuterIterator,这俩个是OneSideOuterIterator的具体实现,其实依赖SortMergeJoinScanner.findNextOuterJoinRows来判断流表和构建表的key,然后进行相应的处理;这俩个主要实现setBufferedSideOutput和setStreamSideOutput这俩个方法,之后的逻辑都在advanceStream中。

      对于FullOuter主要实现就是FullOuterIterator,这里:

private class FullOuterIterator(
    smjScanner: SortMergeFullOuterJoinScanner,
    resultProj: InternalRow => InternalRow,
    numRows: SQLMetric) extends RowIterator {
  private[this] val joinedRow: JoinedRow = smjScanner.getJoinedRow()

  override def advanceNext(): Boolean = {
    val r = smjScanner.advanceNext()
    if (r) numRows += 1
    r
  }

  override def getRow: InternalRow = resultProj(joinedRow)
}

  这么看FullOuter的实现倒是最简单的;

      因为返回的是一个迭代器,所以在查看源码的时候,主要关注advanceNext方法的实现,根据这个可以追溯到整个的join的过程。

      总结,这里主要简单总结了下spark join的实现思想。具体的实现细节还是要深入代码去了解,比如SortMergeJoinExec中,他的溢出是基于什么的?这个其实在SortMergeJoinScanner

中的ExternalAppendOnlyUnsafeRowArray,他基于UnsafeExternalSorter来实现对应的溢写操作。

 

     

      

  

你可能感兴趣的:(Spark SQL(9)-Spark SQL JOIN操作源码总结)