Sched_Boost小结

之前遇到一个耗电问题,最后发现是/proc/sys/kernel/sched_boost节点设置异常,一直处于boost状态。导致所有场景功耗上升。

现在总结一下sched_boost的相关知识。

 

Sched_Boost

sched_boost主要是通过影响Task placement的方式,来进行boost。它属于QTI EAS中的一部分。

默认task placement policy

计算每个cpu的负载,并将task分配到负载最轻的cpu上。如果有多个cpu的负载相同(一般是都处于idle),那么就会把task分配到系统中capacity最大的cpu上。

设置sched_boost

通过设置节点:/proc/sys/kernel/sched_boost 或者内核调用sched_set_boost()函数,可以进行sched_boost,并且在分配任务时,忽略对energy的消耗。

boost一旦设置之后,就必须显示写0来关闭。同时也支持个应用同时调用设置,设置会选择boost等级最高的生效; 而当所有应用都都关闭boost时,boost才会真正失效。

boost等级

sched_boost一共有4个等级,除了0代表关闭boost以外,其他3个等级灵活地控制功耗和性能的不同倾向程度。

Sched_Boost小结_第1张图片

Sched_Boost小结_第2张图片

在通过节点设置,会调用sched_boost_handler

{
    .procname    = "sched_boost",
    .data        = &sysctl_sched_boost,
    .maxlen        = sizeof(unsigned int),
    .mode        = 0644,
    .proc_handler    = sched_boost_handler,
    .extra1        = &neg_three,
    .extra2        = &three,
},

经过verify之后,调用_sched_set_boost来设置boost。

int sched_boost_handler(struct ctl_table *table, int write,
        void __user *buffer, size_t *lenp,
        loff_t *ppos)
{
    int ret;
    unsigned int *data = (unsigned int *)table->data;

    mutex_lock(&boost_mutex);

    ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);

    if (ret || !write)
        goto done;

    if (verify_boost_params(*data))
        _sched_set_boost(*data);
    else
        ret = -EINVAL;

done:
    mutex_unlock(&boost_mutex);
    return ret;

而通过内核调用的方式,同样最后也是调用_sched_set_boost来设置boost。

int sched_set_boost(int type)
{
    int ret = 0;

    mutex_lock(&boost_mutex);
    if (verify_boost_params(type))
        _sched_set_boost(type);
    else
        ret = -EINVAL;
    mutex_unlock(&boost_mutex);
    return ret;
}

 接下来,我们看关键的设置函数_sched_set_boost:

static void _sched_set_boost(int type)
{
    if (type == 0)            //通过type参数判断是否enable/disable boost
        sched_boost_disable_all();   //(1)disable all boost
    else if (type > 0)          
        sched_boost_enable(type);   //(2) enable boost
    else
        sched_boost_disable(-type);  //(3) disable boost

    /*
     * sysctl_sched_boost holds the boost request from
     * user space which could be different from the
     * effectively enabled boost. Update the effective
     * boost here.
     */

    sched_boost_type = sched_effective_boost();
    sysctl_sched_boost = sched_boost_type;
    set_boost_policy(sysctl_sched_boost);  //(4) 设置boost policy
    trace_sched_set_boost(sysctl_sched_boost);
}

 

首先看一下sched_boost的4个用于控制配置的结构体:

其中refcount来记录设置的次数。enter函数表示切换到该boost配置的动作;exit则是退出该boost配置的动作。

static struct sched_boost_data sched_boosts[] = {
    [NO_BOOST] = {
        .refcount = 0,
        .enter = sched_no_boost_nop,
        .exit = sched_no_boost_nop,
    },
    [FULL_THROTTLE_BOOST] = {
        .refcount = 0,
        .enter = sched_full_throttle_boost_enter,
        .exit = sched_full_throttle_boost_exit,
    },
    [CONSERVATIVE_BOOST] = {
        .refcount = 0,
        .enter = sched_conservative_boost_enter,
        .exit = sched_conservative_boost_exit,
    },
    [RESTRAINED_BOOST] = {
        .refcount = 0,
        .enter = sched_restrained_boost_enter,
        .exit = sched_restrained_boost_exit,
    },
};

(1)disable all boost

调用除no boost外,所有boost配置的exit函数并且将他们的refcount清0。

#define SCHED_BOOST_START FULL_THROTTLE_BOOST
#define SCHED_BOOST_END (RESTRAINED_BOOST + 1

static void sched_boost_disable_all(void)
{
    int i;

    for (i = SCHED_BOOST_START; i < SCHED_BOOST_END; i++) {
        if (sched_boosts[i].refcount > 0) {
            sched_boosts[i].exit();
            sched_boosts[i].refcount = 0;
        }
    }
}

(2) enable boost

refcount记录调用次数+;

由于sched+boost支持多应用同时调用的,所以在设置boost之前,要先检查当前有效的boost配置。

优先级是No boost > Full Throttle > Conservative > Restrained。

static void sched_boost_enable(int type)
{
    struct sched_boost_data *sb = &sched_boosts[type];
    int next_boost, prev_boost = sched_boost_type;

    sb->refcount++;    //refcount记录次数+1

    if (sb->refcount != 1)
        return;

    /*
     * This boost enable request did not come before.
     * Take this new request and find the next boost
     * by aggregating all the enabled boosts. If there
     * is a change, disable the previous boost and enable
     * the next boost.
     */

    next_boost = sched_effective_boost();  //设置boost之前,检查当前有效的boost配置
    if (next_boost == prev_boost)
        return;

    sched_boosts[prev_boost].exit();    //调用之前配置的exit,退出之前的boost
    sched_boosts[next_boost].enter();    //调用现在配置的enter,进入当前boost状态

通过检查refcount,来确认当前有效的boost。

static int sched_effective_boost(void)
{
    int i;

    /*
     * The boosts are sorted in descending order by
     * priority.
     */
    for (i = SCHED_BOOST_START; i < SCHED_BOOST_END; i++) {
        if (sched_boosts[i].refcount >= 1)
            return i;
    }

    return NO_BOOST;
}

(3)disable boost

同样假如是disable boost的话,就会相应的对refcount--,并且调用当前boost类型的exit函数来退出boost。

因为sched_boost支持多种boost同时开启,并按优先级设置。所以当disable一种boost时,最后通过检查当前有效的boost来进入余下优先级高的boost模式。

static void sched_boost_disable(int type)
{
    struct sched_boost_data *sb = &sched_boosts[type];
    int next_boost;

    if (sb->refcount <= 0)
        return;

    sb->refcount--;

    if (sb->refcount)
        return;

    /*
     * This boost's refcount becomes zero, so it must
     * be disabled. Disable it first and then apply
     * the next boost.
     */
    sb->exit();

    next_boost = sched_effective_boost();
    sched_boosts[next_boost].enter();
}

 

 (4)设置boost policy

在最后一步中,设置policy来体现task是否需要进行up migrate。

如下是sched_boost不同等级对应的up migrate迁移策略。

Full throttle和Conservative:SCHED_BOOST_ON_BIG---在进行task placement时,仅考虑capacity最大的cpu core

无:SCHED_BOOST_ON_ALL---在进行task placement时,仅不考虑capacity最小的cpu core

No Boost和Restrained:SCHED_BOOST_NONE---正常EAS

/*
 * Scheduler boost type and boost policy might at first seem unrelated,
 * however, there exists a connection between them that will allow us
 * to use them interchangeably during placement decisions. We'll explain
 * the connection here in one possible way so that the implications are
 * clear when looking at placement policies.
 *
 * When policy = SCHED_BOOST_NONE, type is either none or RESTRAINED
 * When policy = SCHED_BOOST_ON_ALL or SCHED_BOOST_ON_BIG, type can
 * neither be none nor RESTRAINED.
 */
static void set_boost_policy(int type)
{
    if (type == NO_BOOST || type == RESTRAINED_BOOST) {  //conservative和full throttle模式才会进行向上迁移
        boost_policy = SCHED_BOOST_NONE;
        return;
    }

    if (boost_policy_dt) {
        boost_policy = boost_policy_dt;
        return;
    }

    if (min_possible_efficiency != max_possible_efficiency) {  //左边是cpu中efficiency最小值,右边为最大值。big.LITTLE架构应该恒成立
        boost_policy = SCHED_BOOST_ON_BIG;
        return;
    }

    boost_policy = SCHED_BOOST_ON_ALL;
}

 

接下来详细分析3种boost设置的原理:

Full Throttle

full throttle(全速)模式下的sched boost,主要有如下2个动作:

(1)core control

(2)freq aggregation

static void sched_full_throttle_boost_enter(void)
{
    core_ctl_set_boost(true);            //(1)core control
    walt_enable_frequency_aggregation(true);   //(2)freq aggregation
}

(1)core control:isoloate/unisoloate cpu cores;enable boost时,开所有cpu core

int core_ctl_set_boost(bool boost)
{
    unsigned int index = 0;
    struct cluster_data *cluster;
    unsigned long flags;
    int ret = 0;
    bool boost_state_changed = false;

    if (unlikely(!initialized))
        return 0;

    spin_lock_irqsave(&state_lock, flags);
    for_each_cluster(cluster, index) {          //修改并记录每个cluster的boost状态
        if (boost) {
            boost_state_changed = !cluster->boost;
            ++cluster->boost;
        } else {
            if (!cluster->boost) {
                ret = -EINVAL;
                break;
            } else {
                --cluster->boost;
                boost_state_changed = !cluster->boost;
            }
        }
    }
    spin_unlock_irqrestore(&state_lock, flags);

    if (boost_state_changed) {
        index = 0;
        for_each_cluster(cluster, index)        //针对每个cluster,apply boost设置
            apply_need(cluster);
    }

    trace_core_ctl_set_boost(cluster->boost, ret);

    return ret;
}
EXPORT_SYMBOL(core_ctl_set_boost);

 

static void apply_need(struct cluster_data *cluster)
{
    if (eval_need(cluster))            //判断是否需要
        wake_up_core_ctl_thread(cluster);    //唤醒cluster的core control thread
}

具体如何判断的:

enable boost时:判断是否需要unisolate cpu,

disable boost时:判断need_cpus < active_cpus是否成立。

并且与上一次更新的间隔时间满足 > delay time。

static bool eval_need(struct cluster_data *cluster)
{
    unsigned long flags;
    struct cpu_data *c;
    unsigned int need_cpus = 0, last_need, thres_idx;
    int ret = 0;
    bool need_flag = false;
    unsigned int new_need;
    s64 now, elapsed;

    if (unlikely(!cluster->inited))
        return 0;

    spin_lock_irqsave(&state_lock, flags);

    if (cluster->boost || !cluster->enable) {           
        need_cpus = cluster->max_cpus;      //当enable boost时,设置need_cpus为所有cpu
    } else {
        cluster->active_cpus = get_active_cpu_count(cluster);          //当disable boost时,首先获取active的cpu
        thres_idx = cluster->active_cpus ? cluster->active_cpus - 1 : 0;
        list_for_each_entry(c, &cluster->lru, sib) {                
            bool old_is_busy = c->is_busy;

            if (c->busy >= cluster->busy_up_thres[thres_idx] ||
                sched_cpu_high_irqload(c->cpu))
                c->is_busy = true;
            else if (c->busy < cluster->busy_down_thres[thres_idx])
                c->is_busy = false;

            trace_core_ctl_set_busy(c->cpu, c->busy, old_is_busy,
                        c->is_busy);
            need_cpus += c->is_busy;
        }
        need_cpus = apply_task_need(cluster, need_cpus);            //根据task需要,计算need_cpus
    }
    new_need = apply_limits(cluster, need_cpus);                 //限制need_cpus范围:cluster->min_cpus <= need_cpus <= clusterr->max_cpus
    need_flag = adjustment_possible(cluster, new_need);             //(*)enable boost时:判断是否需要unisolate cpu;    disable boost时:判断need_cpus < active_cpus是否成立

    last_need = cluster->need_cpus;
    now = ktime_to_ms(ktime_get());

    if (new_need > cluster->active_cpus) {      
        ret = 1;                                    //enable boost
    } else {
        /*
         * When there is no change in need and there are no more
         * active CPUs than currently needed, just update the
         * need time stamp and return.                //当需要的cpu没有变化时,只需要更新时间戳,然后return
         */
        if (new_need == last_need && new_need == cluster->active_cpus) {
            cluster->need_ts = now;
            spin_unlock_irqrestore(&state_lock, flags);
            return 0;
        }

        elapsed =  now - cluster->need_ts;
        ret = elapsed >= cluster->offline_delay_ms;    //修改need_cpus的时间要大于delay时间,才认为有必要进行更改
    }

    if (ret) {
        cluster->need_ts = now;                //更新时间戳,need_cpus
        cluster->need_cpus = new_need;
    }
    trace_core_ctl_eval_need(cluster->first_cpu, last_need, new_need,
                 ret && need_flag);
    spin_unlock_irqrestore(&state_lock, flags);

    return ret && need_flag;
}

 满足更新要求的条件后,就会唤醒core control thread

static void wake_up_core_ctl_thread(struct cluster_data *cluster)
{
    unsigned long flags;

    spin_lock_irqsave(&cluster->pending_lock, flags);
    cluster->pending = true;
    spin_unlock_irqrestore(&cluster->pending_lock, flags);

    wake_up_process(cluster->core_ctl_thread);
}

 其中会有一个检测pending的防止重入的操作。假如pending标志已经改写,那么就会将当前进程移出rq。

static int __ref try_core_ctl(void *data)
{
    struct cluster_data *cluster = data;
    unsigned long flags;

    while (1) {
        set_current_state(TASK_INTERRUPTIBLE);                //先退出RUNNING状态,设为TASK_INTERRUPTIBLE,后面再调用schedule()。会判断当前task已不处于TASK_RUNNING状态,随后会进行dequeue,并调度其他进程到rq->curr。(典型的出rq操作)
spin_lock_irqsave(
&cluster->pending_lock, flags); if (!cluster->pending) {                        //检测pending,如果已经core control完成,则直接进行schedule(),并准备退出该thread spin_unlock_irqrestore(&cluster->pending_lock, flags); schedule(); if (kthread_should_stop()) break; spin_lock_irqsave(&cluster->pending_lock, flags); } set_current_state(TASK_RUNNING); cluster->pending = false; spin_unlock_irqrestore(&cluster->pending_lock, flags); do_core_ctl(cluster);        //do work } return 0; }
static void __ref do_core_ctl(struct cluster_data *cluster)
{
    unsigned int need;

    need = apply_limits(cluster, cluster->need_cpus);      //再次check need_cpus是否合法

    if (adjustment_possible(cluster, need)) {            //再次check是否需要更改
        pr_debug("Trying to adjust group %u from %u to %u\n",
                cluster->first_cpu, cluster->active_cpus, need);

        if (cluster->active_cpus > need)          //根据need进行cpu un/isolate
            try_to_isolate(cluster, need);
        else if (cluster->active_cpus < need)
            try_to_unisolate(cluster, need);
    }
}

(2)freq aggregation:提升cpu freq

设置flag:

static inline void walt_enable_frequency_aggregation(bool enable)
{
    sched_freq_aggr_en = enable;
}

后续在以下这一个地方会影响freq选择:

  • load freq polcy时,会根据是否开启freq_aggregation的flag而影响load的计算。

开启flag之后,会使用aggr_grp_load替代rq->grp_time.prev_runnable_sum

aggr_grp_load是当前cluster中所有cpu core的rq->grp_time.prev_runnable_sum的总和:sum。

那么开启之后,就会使load变大,从而提升cpu freq或者进行

static inline u64 freq_policy_load(struct rq *rq)
{
。。。
    if (sched_freq_aggr_en)
        load = rq->prev_runnable_sum + aggr_grp_load;
    else
        load = rq->prev_runnable_sum + rq->grp_time.prev_runnable_sum;
。。。
}

Conservative 

static void sched_conservative_boost_enter(void)
{
    update_cgroup_boost_settings();                    //(1)更新cgroup boost设置
    sched_task_filter_util = sysctl_sched_min_task_util_for_boost;  //(2)task util调节
}

 (1)遍历group,group一般有以下这些:backgroun,foreground,top-app,rt。

将所有sched_boost_enabled设置为false,除了写了no_override的group。而从init.target.rc中可以看到top-app和foregroung写了该flag(如下),所以最后就会有

write /dev/stune/foreground/schedtune.sched_boost_no_override 1
write /dev/stune/top-app/schedtune.sched_boost_no_override 1
void update_cgroup_boost_settings(void)
{
    int i;

    for (i = 0; i < BOOSTGROUPS_COUNT; i++) {
        if (!allocated_group[i])
            break;

        if (allocated_group[i]->sched_boost_no_override)
            continue;

        allocated_group[i]->sched_boost_enabled = false;
    }
}

(2)修改min_task_util的门限

/* 1ms default for 20ms window size scaled to 1024 */
unsigned int sysctl_sched_min_task_util_for_boost = 51;  //conservative 保守
/* 0.68ms default for 20ms window size scaled to 1024 */
unsigned int sysctl_sched_min_task_util_for_colocation = 35;  //normal

目前仅发现在如下2处会用到这个值:

1、获取sched_boost_enabled仍然为true的task。过滤task_util较小的task,关闭boost。

下面这个函数是返回task boost policy的,也就是placement boost。函数主要逻辑:

task所在group中打开了sched_boost_endabled,并且sched_boost设置非0:
假如sched_boost=1(full throttle),则policy是SCHED_BOOST_ON_BIG
假如sched_boost=2(Conservative),则还需要判断task util是否超过sched_task_filter_util。超过了,policy=SCHED_BOOST_ON_BIG;没超过,policy=SCHED_BOOST_NONE

 

根据上面看到只有top-app和foreground这2个group是打开了sched_boost_enabled的。

所以,这里就是将top-app和foreground中的task_util较大的task挑选出来,enable了boost;而其他的task,都关闭了boost。

static inline enum sched_boost_policy task_boost_policy(struct task_struct *p)
{
    enum sched_boost_policy policy = task_sched_boost(p) ?
                            sched_boost_policy() :
                            SCHED_BOOST_NONE;
    if (policy == SCHED_BOOST_ON_BIG) {
        /*
         * Filter out tasks less than min task util threshold
         * under conservative boost.
         */
        if (sched_boost() == CONSERVATIVE_BOOST &&
                task_util(p) <= sched_task_filter_util)  //修改了这个门限
            policy = SCHED_BOOST_NONE;
    }

    return policy;
}

 

 2、在更新walt负载时

更新了unfilter的计数,增大到51,相当于:/* 1ms default for 20ms window size scaled to 1024 */(原先默认为:35,即0.68ms)。也就是当demand_scaled大于这个门限后,会设置一个nr_windows的缓冲时间。缓冲时间每一次update_history就会减1,直到为0。

static void update_history(struct rq *rq, struct task_struct *p,
             u32 runtime, int samples, int event)
{
。。。
    if (demand_scaled > sched_task_filter_util)
        p->unfilter = sysctl_sched_task_unfilter_nr_windows;
    else
        if (p->unfilter)
            p->unfilter = p->unfilter - 1;
。。。
}

 p->unfilter这个参数又会在如下两个地方用于判断:

首先是在fair.c中,但是由于现在是CONSERVATIVE_BOOST,所以,只会return false。这条暂不分析下去。

static inline bool task_skip_min_cpu(struct task_struct *p)
{
    return sched_boost() != CONSERVATIVE_BOOST &&
        get_rtg_status(p) && p->unfilter;
}

另外一个地方是如下walt.h中,由于p->unfilter非0,那么就会判断当前cpu是否为小核,如果是小核,那么return true。

static inline bool walt_should_kick_upmigrate(struct task_struct *p, int cpu)
{
    struct related_thread_group *rtg = p->grp;

    if (is_suh_max() && rtg && rtg->id == DEFAULT_CGROUP_COLOC_ID &&
                rtg->skip_min && p->unfilter)
        return is_min_capacity_cpu(cpu);

    return false;
}

 返回值会影响如下函数的返回值,也是return flase。

所以,会告诉系统当前的task load与当前cpu的capacity不匹配,需要进行迁移。

此外,在进行迁移时,也是调用该函数,用于排除目标cpu为小核。

综上,就是将task从小核迁移到大核。

static inline bool task_fits_max(struct task_struct *p, int cpu)
{
    unsigned long capacity = capacity_orig_of(cpu);
    unsigned long max_capacity = cpu_rq(cpu)->rd->max_cpu_capacity.val;
    unsigned long task_boost = per_task_boost(p);

    if (capacity == max_capacity)
        return true;

    if (is_min_capacity_cpu(cpu)) {
        if (task_boost_policy(p) == SCHED_BOOST_ON_BIG ||
            task_boost > 0 ||
            schedtune_task_boost(p) > 0 ||
            walt_should_kick_upmigrate(p, cpu))  //条件为true
            return false;
    } else { /* mid cap cpu */
        if (task_boost > TASK_BOOST_ON_MID)
            return false;
    }

    return task_fits_capacity(p, capacity, cpu);
}

Restrained

该模式下,从代码看,仅打开了freq aggregation。与上面全速模式类似,不再赘述。

static void sched_restrained_boost_enter(void)
{
    walt_enable_frequency_aggregation(true);
}

 

总结各个boost的效果

Full throttle:

1、通过core control,将所有cpu都进行unisolation

2、通过freq聚合,将load计算放大。从而触发提升freq,或者迁移等

3、通过设置boost policy= SCHED_BOOST_ON_BIG,迁移挑选target cpu时,只会选择大核

最终效果应该尽可能把任务都放在大核运行(除了cpuset中有限制)

 

Conservative:

1、通过更新group boost配置,仅让top-app和foreground组进行task placement boost

2、提高min_task_util的门限,让进行up migrate的条件更苛刻。只有load较大(>1ms)的task,会进行up migrate。

2、同上,更改min_task_util门限后,会提醒系统task与cpu是misfit,需要进行迁移。

3、通过设置boost policy= SCHED_BOOST_ON_BIG,迁移挑选target cpu时,只会选择大核

最终效果:top-app和foreground的一些task会迁移到大核运行

 

Restrained:

1、通过freq聚合,将load计算放大。从而触发提升freq,或者迁移等

load放大后,仍遵循基本EAS。提升freq或者迁移,视情况而定。

 

注意关于early_datection部分简述参考之前文章:https://www.cnblogs.com/lingjiajun/p/12317090.html 中CPU freq调节章节。不过代码中貌似没有看到会影响的地方。由于EAS部分本人还没有仔细学习分析代码,可能还有疏漏或者错误,欢迎交流。

你可能感兴趣的:(Sched_Boost小结)