图像增强常用评价标准——峰值信噪比、结构相似度

       图像增强的评价标准在像素层面上通常包含有平均绝对误差法(MAE)、均方误差法(MSE)、峰值信噪比(PSNR)以及结构相似度(SSIM),目前图像增强(图像超分辨率、图像去噪、图像去模糊、图像去雨,图像去块效应等)比较权威的客观评价标准为峰值信噪比(PSNR)与结构相似度(SSIM)。下面给出峰值信噪比与结构相似度的计算公式与matlab实现方式:

PSNR与SSIM的公式

PSNR的计算公式如下:

图像增强常用评价标准——峰值信噪比、结构相似度_第1张图片
即PSNR的计算方法是在MSE的基础上得到相应于2^ n n n的对数比值, n n n为图像的位数,一般为8位, M M M N N N位图像的宽高, X ( i , j ) X(i, j) X(i,j) X ′ ( i , j ) X'(i, j) X(i,j)为增强后的图像与lable在位置 ( i , j ) (i, j) (i,j)的像素值。

SSIM的计算公式如下:

在这里插入图片描述
其中 μ \mu μ σ \sigma σ代表的是图像块的均值和方差,而 σ x y \sigma_{xy} σxy表示的图像块 x x x与图像块 y y y 之间的协方差, C 1 C_1 C1 C 2 C_2 C2为常数,一般可设置为0。

PSNR与SSIM的代码实现

PSNR的matlab代码实现:

function psnr=PSNR_Compute(im1,im2)
if size(im1, 3) == 3,
    im1 = rgb2ycbcr(im1);
    im1 = im1(:, :, 1);
end

if size(im2, 3) == 3,
    im2 = rgb2ycbcr(im2);
    im2 = im2(:, :, 1);
end

imdff = double(im1) - double(im2);
imdff = imdff(:);

rmse = sqrt(mean(imdff.^2));
psnr = 20*log10(255/rmse);

SSIM的matlab代码实现:

function ssim  =  cal_ssim( im1, im2, b_row, b_col )

[h w]  =  size( im1 );
ssim   =  ssim_index( im1( b_row+1:h-b_row, b_col+1:w-b_col ), im2( b_row+1:h-b_row, b_col+1:w-b_col ) );
return;


function [mssim, ssim_map] = ssim_index(img1, img2, K, window, L)
if (nargin < 2 | nargin > 5)
   mssim = -Inf;
   ssim_map = -Inf;
   return;
end

if (size(img1) ~= size(img2))
   mssim = -Inf;
   ssim_map = -Inf;
   return;
end

[M N] = size(img1);

if (nargin == 2)
   if ((M < 11) | (N < 11))
	   mssim = -Inf;
	   ssim_map = -Inf;
      return
   end
   window = fspecial('gaussian', 11, 1.5);	%
   K(1) = 0.01;								% 默认设置
   K(2) = 0.03;								%
   L = 255;                                 %
end

if (nargin == 3)
   if ((M < 11) | (N < 11))
	   mssim = -Inf;
	   ssim_map = -Inf;
      return
   end
   window = fspecial('gaussian', 11, 1.5);
   L = 255;
   if (length(K) == 2)
      if (K(1) < 0 | K(2) < 0)
		   mssim = -Inf;
   		ssim_map = -Inf;
	   	return;
      end
   else
	   mssim = -Inf;
   	ssim_map = -Inf;
	   return;
   end
end

if (nargin == 4)
   [H W] = size(window);
   if ((H*W) < 4 | (H > M) | (W > N))
	   mssim = -Inf;
	   ssim_map = -Inf;
      return
   end
   L = 255;
   if (length(K) == 2)
      if (K(1) < 0 | K(2) < 0)
		   mssim = -Inf;
   		ssim_map = -Inf;
	   	return;
      end
   else
	   mssim = -Inf;
   	ssim_map = -Inf;
	   return;
   end
end

if (nargin == 5)
   [H W] = size(window);
   if ((H*W) < 4 | (H > M) | (W > N))
	   mssim = -Inf;
	   ssim_map = -Inf;
      return
   end
   if (length(K) == 2)
      if (K(1) < 0 | K(2) < 0)
		   mssim = -Inf;
   		ssim_map = -Inf;
	   	return;
      end
   else
	   mssim = -Inf;
   	ssim_map = -Inf;
	   return;
   end
end

C1 = (K(1)*L)^2;
C2 = (K(2)*L)^2;
window = window/sum(sum(window));
img1 = double(img1);
img2 = double(img2);

mu1   = filter2(window, img1, 'valid');
mu2   = filter2(window, img2, 'valid');
mu1_sq = mu1.*mu1;
mu2_sq = mu2.*mu2;
mu1_mu2 = mu1.*mu2;
sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq;
sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq;
sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2;

if (C1 > 0 & C2 > 0)
   ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2));
else
   numerator1 = 2*mu1_mu2 + C1;
   numerator2 = 2*sigma12 + C2;
	denominator1 = mu1_sq + mu2_sq + C1;
   denominator2 = sigma1_sq + sigma2_sq + C2;
   ssim_map = ones(size(mu1));
   index = (denominator1.*denominator2 > 0);
   ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index));
   index = (denominator1 ~= 0) & (denominator2 == 0);
   ssim_map(index) = numerator1(index)./denominator1(index);
end

mssim = mean2(ssim_map);

return

你可能感兴趣的:(图像增强常用评价标准——峰值信噪比、结构相似度)