LRU算法(C++实现)

一、LRU算法简介

对于web开发而言,缓存必不可少,也是提高性能最常用的方式。无论是浏览器缓存,还是服务端的缓存(通过memcached或者redis等内存数据库)。缓存不仅可以加速用户的访问,同时也可以降低服务器的负载和压力。那么,了解常见的缓存淘汰算法的策略和原理就显得特别重要。

常见的缓存算法

  • LRU (Least recently used) 最近最少使用,如果数据最近被访问过,那么将来被访问的几率也更高。
  • LFU (Least frequently used) 最不经常使用,如果一个数据在最近一段时间内使用次数很少,那么在将来一段时间内被使用的可能性也很小。
  • FIFO (Fist in first out) 先进先出, 如果一个数据最先进入缓存中,则应该最早淘汰掉。

 

LRU是什么?按照英文的直接原义就是Least Recently Used,最近最久未使用法,它是按照一个非常著名的计算机操作系统基础理论得来的:最近使用的页面数据会在未来一段时期内仍然被使用,已经很久没有使用的页面很有可能在未来较长的一段时间内仍然不会被使用。基于这个思想,会存在一种缓存淘汰机制,每次从内存中找到最久未使用的数据然后置换出来,从而存入新的数据!它的主要衡量指标是使用的时间,附加指标是使用的次数。在计算机中大量使用了这个机制,它的合理性在于优先筛选热点数据,所谓热点数据,就是最近最多使用的数据!因为,利用LRU我们可以解决很多实际开发中的问题,并且很符合业务场景。

 

像浏览器的缓存策略、memcached的缓存策略都是使用LRU这个算法,LRU算法会将近期最不会访问的数据淘汰掉。LRU如此流行的原因是实现比较简单,而且对于实际问题也很实用,良好的运行时性能,命中率较高。下面谈谈如何实现LRU缓存:

 

  • 新数据插入到链表头部
  • 每当缓存命中(即缓存数据被访问),则将数据移到链表头部
  • 当链表满的时候,将链表尾部的数据丢弃

LRU Cache具备的操作:

  • set(key,value):如果key在hashmap中存在,则先重置对应的value值,然后获取对应的节点cur,将cur节点从链表删除,并移动到链表的头部;若果key在hashmap不存在,则新建一个节点,并将节点放到链表的头部。当Cache存满的时候,将链表最后一个节点删除即可。
  • get(key):如果key在hashmap中存在,则把对应的节点放到链表头部,并返回对应的value值;如果不存在,则返回-1。

 

二、C++实现

LRU实现采用双向链表 + Map 来进行实现。这里采用双向链表的原因是:如果采用普通的单链表,则删除节点的时候需要从表头开始遍历查找,效率为O(n),采用双向链表可以直接改变节点的前驱的指针指向进行删除达到O(1)的效率。使用Map来保存节点的key、value值便于能在O(logN)的时间查找元素,对应get操作。

双链表节点的定义:

struct CacheNode {
  int key;      // 键
  int value;    // 值
  CacheNode *pre, *next;  // 节点的前驱、后继指针
  CacheNode(int k, int v) : key(k), value(v), pre(NULL), next(NULL) {}
};

对于LRUCache这个类而言,构造函数需要指定容量大小

LRUCache(int capacity)
{
  size = capacity;      // 容量
  head = NULL;          // 链表头指针
  tail = NULL;          // 链表尾指针
}

set(key, value)操作需要分情况判断。如果当前的key值对应的节点已经存在,则将这个节点取出来,并且删除节点所处的原有的位置,并在头部插入该节点;如果节点不存在节点中,这个时候需要在链表的头部插入新节点,插入新节点可能导致容量溢出,如果出现溢出的情况,则需要删除链表尾部的节点。

void set(int key, int value)
{
  map::iterator it = mp.find(key);
  if (it != mp.end())
  {
    CacheNode *node = it -> second;
    node -> value = value;
    remove(node);
    setHead(node);
  }
  else
  {
    CacheNode *newNode = new CacheNode(key, value);
    if (mp.size() >= size)
    {
      map::iterator iter = mp.find(tail -> key);
      remove(tail);
      mp.erase(iter);
    }
    setHead(newNode);
    mp[key] = newNode;
  }
}

 

完整代码:

#include
#include

using namespace std;

/**
 * Definition of cachelist node, it's double linked list node.
 */
struct CacheNode {
  int key;
  int value;
  CacheNode *pre, *next;
  CacheNode(int k, int v) : key(k), value(v), pre(NULL), next(NULL) {}
};

class LRUCache{
private:
  int size;                     // Maximum of cachelist size.
  CacheNode *head, *tail;
  map mp;          // Use hashmap to store
public:
  LRUCache(int capacity)
  {
    size = capacity;
    head = NULL;
    tail = NULL;
  }

  int get(int key)
  {
    map::iterator it = mp.find(key);
    if (it != mp.end())
    {
      CacheNode *node = it -> second;
      remove(node);
      setHead(node);
      return node -> value;
    }
    else
    {
      return -1;
    }
  }

  void set(int key, int value)
  {
    map::iterator it = mp.find(key);
    if (it != mp.end())
    {
      CacheNode *node = it -> second;
      node -> value = value;
      remove(node);
      setHead(node);
    }
    else
    {
      CacheNode *newNode = new CacheNode(key, value);
      if (mp.size() >= size)
      {
	map::iterator iter = mp.find(tail -> key);
      	remove(tail);
	mp.erase(iter);
      }
      setHead(newNode);
      mp[key] = newNode;
    }
  }

  void remove(CacheNode *node)
  {
    if (node -> pre != NULL)
    {
      node -> pre -> next = node -> next;
    }
    else
    {
      head = node -> next;
    }
    if (node -> next != NULL)
    {
      node -> next -> pre = node -> pre;
    }
    else
    {
      tail = node -> pre;
    }
  }

  void setHead(CacheNode *node)
  {
    node -> next = head;
    node -> pre = NULL;

    if (head != NULL)
    {
      head -> pre = node;
    }
    head = node;
    if (tail == NULL)
    {
      tail = head;
    }
  }
};


int main(int argc, char **argv)
{
  LRUCache *lruCache = new LRUCache(2);
  lruCache -> set(2, 1);
  lruCache -> set(1, 1);
  cout << lruCache -> get(2) << endl;
  lruCache -> set(4, 1);
  cout << lruCache -> get(1) << endl;
  cout << lruCache -> get(2) << endl;
}

 

你可能感兴趣的:(C/C++,算法刷题)