GAN初探(论文Generative Adversarial Nets阅读笔记)

GAN初探(论文Generative Adversarial Nets阅读笔记)

  • 证明最终收敛于 p G = p d a t a p_G=p_{data} pG=pdata
  • 证明上述算法流程就等同于对(1)式进行优化
  • 实验代码(参考[https://gitee.com/xiaonaw/PyTorch-GAN/blob/master/implementations/gan/gan.py](https://gitee.com/xiaonaw/PyTorch-GAN/blob/master/implementations/gan/gan.py))
  • 实验结果图展示

 放假一直比较颓,没有更新相关的博客笔记。今天弄一点新东西,就是比较火的GAN——生成对抗神经网络。
 GAN的逻辑主要是有两个系统组成。一个是G层,其主要目的是训练相应的参数,达到模拟真实数据生成的效果。另外一个是D层,其目的是对于输入D层的数据进行训练,判断其 是真实数据产生而不是G层产生的概率。
 所以生成对抗网络,最终要优化的式子便是下式:
在这里插入图片描述
 在这个式子当中,首先,对于D层来说,我们希望他的判断能力非常准确,那么判断能力越好, E x ∼ p d a t a ( x ) [ log ⁡ D ( x ) ] E_{x\thicksim p_{data}(x)}[\log D(x)] Expdata(x)[logD(x)]这一项应该越大,同时 D ( G ( z ) ) D(G(z)) D(G(z))应当越小,所以 E z ∼ p z ( z ) [ log ⁡ ( 1 − D ( G ( z ) ) ] E_{z\thicksim p_z(z)}[\log (1-D(G(z))] Ezpz(z)[log(1D(G(z))]这一项应当越大,故我们需要找适合的参数D来最大化上面的1式。其次,对于G来说,我们希望G接近于真实数据的生成分布,所以希望"G能够蒙骗住D层",故希望上式寻找合适的G,使其最小化。
 在大致了解了论文提出的“生成对抗”思想和需要优化的公式之后我们开始重点看如下两个问题:

  • 证明根据上述的优化公式得到的最终优化结果就是 p G = p d a t a p_G=p_{data} pG=pdata
  • 证明根据论文所提出的算法步骤
    GAN初探(论文Generative Adversarial Nets阅读笔记)_第1张图片
    得到的最终结果就是 p G = p d a t a p_G=p_{data} pG=pdata

证明最终收敛于 p G = p d a t a p_G=p_{data} pG=pdata

 注意在训练过程中,有如下式子成立:GAN初探(论文Generative Adversarial Nets阅读笔记)_第2张图片
在这个式子当中,主要是将 p z ( z ) p_z(z) pz(z) p g ( x ) p_g(x) pg(x)之间的关系做了变换。
对于上式可以根据对数函数当中 a log ⁡ ( y ) + b log ⁡ ( 1 − y ) a\log (y)+b\log (1-y) alog(y)+blog(1y),其最大值是在y取 a a + b \frac{a}{a+b} a+ba时取到,所以式子变为下述模样:
GAN初探(论文Generative Adversarial Nets阅读笔记)_第3张图片
接下来我们要证明 p g = p d a t a p_g=p_{data} pg=pdata时是上式的最小值。注意在 p g = p d a t a p_g=p_{data} pg=pdata时,上式得到一个值 − log ⁡ 4 -\log 4 log4
C ( G ) C(G) C(G)的基础上减掉 E x ∼ p d a t a ( x ) [ − log ⁡ 2 ] + E z ∼ p z ( z ) [ − log ⁡ 2 ] E_{x\thicksim p_{data}(x)}[-\log 2]+E_{z\thicksim p_z(z)}[-\log 2] Expdata(x)[log2]+Ezpz(z)[log2]可以得到如下式子:
在这里插入图片描述
其可以化简为:在这里插入图片描述
其中JSD这一项往往是非负的,所以得到其最小值。

证明上述算法流程就等同于对(1)式进行优化

 论文中指出,将其 V ( G , D ) V(G,D) V(G,D)看作 p g p_g pg的函数,那么 p g p_g pg作最优化,相当于在D取最优值的时候,对其通过梯度回传的方式优化 p g p_g pg,而对D进行最优化的方式,就如算法1当中所示。所以上述算法流程等同于对(1)进行优化。

实验代码(参考https://gitee.com/xiaonaw/PyTorch-GAN/blob/master/implementations/gan/gan.py)

import argparse
import os
import numpy as np
import math

import torchvision.transforms as transforms
from torchvision.utils import save_image

from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable

import torch.nn as nn
import torch.nn.functional as F
import torch

os.makedirs("images", exist_ok=True)

parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=28, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval betwen image samples")
opt = parser.parse_args()
print(opt)

img_shape = (opt.channels, opt.img_size, opt.img_size)

cuda = True if torch.cuda.is_available() else False


class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()

        def block(in_feat, out_feat, normalize=True):
            layers = [nn.Linear(in_feat, out_feat)]
            if normalize:
                layers.append(nn.BatchNorm1d(out_feat, 0.8))
            layers.append(nn.LeakyReLU(0.2, inplace=True))
            return layers

        self.model = nn.Sequential(
            *block(opt.latent_dim, 128, normalize=False),
            *block(128, 256),
            *block(256, 512),
            *block(512, 1024),
            nn.Linear(1024, int(np.prod(img_shape))),
            nn.Tanh()
        )

    def forward(self, z):
        img = self.model(z)
        img = img.view(img.size(0), *img_shape)
        return img


class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()

        self.model = nn.Sequential(
            nn.Linear(int(np.prod(img_shape)), 512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, 256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(256, 1),
            nn.Sigmoid(),
        )

    def forward(self, img):
        img_flat = img.view(img.size(0), -1)
        validity = self.model(img_flat)

        return validity


# Loss function
adversarial_loss = torch.nn.BCELoss()

# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()

if cuda:
    generator.cuda()
    discriminator.cuda()
    adversarial_loss.cuda()

# Configure data loader
os.makedirs("../../data/mnist", exist_ok=True)
dataloader = torch.utils.data.DataLoader(
    datasets.MNIST(
        "../../data/mnist",
        train=True,
        download=True,
        transform=transforms.Compose(
            [transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
        ),
    ),
    batch_size=opt.batch_size,
    shuffle=True,
)

# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))

Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor

# ----------
#  Training
# ----------

for epoch in range(opt.n_epochs):
    for i, (imgs, _) in enumerate(dataloader):

        # Adversarial ground truths
        valid = Variable(Tensor(imgs.size(0), 1).fill_(1.0), requires_grad=False)
        fake = Variable(Tensor(imgs.size(0), 1).fill_(0.0), requires_grad=False)

        # Configure input
        real_imgs = Variable(imgs.type(Tensor))

        # -----------------
        #  Train Generator
        # -----------------

        optimizer_G.zero_grad()

        # Sample noise as generator input
        z = Variable(Tensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim))))

        # Generate a batch of images
        gen_imgs = generator(z)

        # Loss measures generator's ability to fool the discriminator
        g_loss = adversarial_loss(discriminator(gen_imgs), valid)

        g_loss.backward()
        optimizer_G.step()

        # ---------------------
        #  Train Discriminator
        # ---------------------

        optimizer_D.zero_grad()

        # Measure discriminator's ability to classify real from generated samples
        real_loss = adversarial_loss(discriminator(real_imgs), valid)
        fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
        d_loss = (real_loss + fake_loss) / 2

        d_loss.backward()
        optimizer_D.step()

        print(
            "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
            % (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item())
        )

        batches_done = epoch * len(dataloader) + i
        if batches_done % opt.sample_interval == 0:
            save_image(gen_imgs.data[:25], "images/%d.png" % batches_done, nrow=5, normalize=True)

实验结果图展示

GAN初探(论文Generative Adversarial Nets阅读笔记)_第4张图片

你可能感兴趣的:(论文阅读)