HDU 5914 Triangle(斐波那契数列+构造)

Triangle

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 52    Accepted Submission(s): 42


Problem Description
Mr. Frog has n sticks, whose lengths are 1,2, 3 n respectively. Wallice is a bad man, so he does not want Mr. Frog to form a triangle with three of the sticks here. He decides to steal some sticks! Output the minimal number of sticks he should steal so that Mr. Frog cannot form a triangle with
any three of the remaining sticks.
 

Input
The first line contains only one integer T ( T20), which indicates the number of test cases. 

For each test case, there is only one line describing the given integer n ( 1n20).
 

Output
For each test case, output one line “Case #x: y”, where x is the case number (starting from 1), y is the minimal number of sticks Wallice should steal.
 

Sample Input
 
   
3 4 5 6
 

Sample Output
 
   
Case #1: 1 Case #2: 1 Case #3: 2

题意:有1~n n个数,问最少拿走多少个数能使剩下的数不能构成三角形。

题目数据量很小……一个个找打表完全可以实现,但是算起来并没有那么容易,还是有规律存在的;

首先考虑一下,除开123不谈,任意三个相邻的数是肯定可以组成三角形的;并且如果有两个数很近的时候,也肯定可以和另一个数组成三角形(两边之差小于第三边);因此我们考虑有一定间隔的情况,即对于剩下的边总有a[i]+a[i+1]=a[i+2],因此想到斐波那契数列,接下来我们证明它的充要性;

充分性:a[i]+a[i+1]=a[i+2],那个对于每一个比a[i+2]更大的数一定小于a[i]+a[i+1],因此可证;

必要性:如果有任意一个比a[i+1]大一点的数,那么要么对于当前的a[i+2]满足两边之和大于第三边,就可以构成三角形;如果是小一点,那么对于前面的一组数又可以组成三角形,因此可证;

因此斐波那契数列可行~

但是= =,谁会在比赛的时候证啊……应该是写出11235后直觉反应再随便搞搞吧~

#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;
int n;
int main(){
	int t,cas=1;
	cin>>t;
	int a[22]={0,0,0,0,1,1,2,3,3,4,5,6,7,7,8,9,10,11,12,13,14};
	while(t--){
		int n;
		cin>>n;
		printf("Case #%d: %d\n",cas++,a[n]);
	}
		
		

}

佩服董亚美学姐手动打表算出啊~



你可能感兴趣的:(数论,暴力,构造)