Rank | Name | Score | Finish Time | Q1 (4) | Q2 (4) | Q3 (5) | Q4 (6) |
---|---|---|---|---|---|---|---|
175 / 4729 | YoungForest | 19 | 1:05:07 | 0:21:38 | 0:39:43 | 0:50:40 | 1:05:07 |
整体难度不大,尤其是后2题并没有该有的难度。
直接模拟构造结果字符串的过程即可。这里寻找字符串的过程可以使用二分查找,因为原始字符串需要更新,所以使用二叉查找树这一数据结构较好。
时间复杂度: O(N * log N),
空间复杂度: O(N).
class Solution {
public:
string sortString(string s) {
string ans;
multiset<char> container;
for (char c : s) {
container.insert(c);
}
while (!container.empty()) {
char smallest = *container.begin();
container.erase(container.begin());
ans.push_back(smallest);
decltype(container.begin()) it;
while ((it = container.upper_bound(smallest)) != container.end()) {
ans.push_back(*it);
smallest = *it;
container.erase(it);
}
if (!container.empty()) {
char largest = *(prev(container.end()));
container.erase(prev(container.end()));
ans.push_back(largest);
while ((it = container.lower_bound(largest)) != container.begin()) {
ans.push_back(*prev(it));
largest = *prev(it);
container.erase(prev(it));
}
}
}
return ans;
}
};
观察有:奇数减奇数等于偶数,偶数减偶数等于偶数。所以问题可以转化为,寻找最左边计数为奇数(或偶数)的位置。因为有5个元音字母,分奇偶,共32种状态。
时间复杂度: O(N),
空间复杂度: O(1).
class Solution {
public:
int findTheLongestSubstring(string s) {
vector<int> left_state(32, -2);
left_state[0] = -1;
auto code = [&](unordered_map<char, int>& m) -> unsigned int {
const static vector<char> position = {'a', 'e', 'i', 'o', 'u'};
unsigned int ans = 0;
for (unsigned int i = 0; i < position.size(); ++i) {
if (m[position[i]] % 2 == 1) {
ans |= (1 << i);
}
}
return ans;
};
unordered_map<char, int> m;
int ans = 0;
for (int i = 0; i < s.size(); ++i) {
++m[s[i]];
auto c = code(m);
if (left_state[c] != -2) {
ans = max(ans, i - left_state[c]);
} else {
left_state[c] = i;
}
}
return ans;
}
};
树的问题用递归解。
时间复杂度: O(N),
空间复杂度: O(N).
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
// left, right
// return result if root is left/right child
int ret = 0;
pair<int, int> recurse(TreeNode* root) {
if (root) {
auto l = recurse(root->left);
auto r = recurse(root->right);
ret = max({ret, r.second + 1, l.first + 1});
return {r.second + 1, l.first + 1};
} else {
return {-1, -1};
}
}
public:
int longestZigZag(TreeNode* root) {
auto ans = recurse(root);
return ret;
}
};
仍然是 树的问题用递归解决。
返回值依次为:
时间复杂度: O(N),
空间复杂度: O(height).
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
int ret = 0;
// smallest, largest, BST?, sum
tuple<int, int, bool, int> recurse(TreeNode* root) {
if (!root) {
return {0, 0, true, 0};
} else {
auto l = recurse(root->left);
auto r = recurse(root->right);
bool isBST = (root->left == nullptr || get<1>(l) < root->val) && (root->right == nullptr || get<0>(r) > root->val) && get<2>(l) && get<2>(r);
int smallest = root->val, largest = root->val;
if (root->left) {
smallest = min(smallest, get<0>(l));
largest = max(largest, get<1>(l));
}
if (root->right) {
smallest = min(smallest, get<0>(r));
largest = max(largest, get<1>(r));
}
int s = get<3>(l) + get<3>(r) + root->val;
if (isBST)
ret = max(s, ret);
return {smallest, largest, isBST, s};
}
}
public:
int maxSumBST(TreeNode* root) {
recurse(root);
return ret;
}
};