题目链接:
https://vjudge.net/problem/POJ-3421
题目大意:
给你一个数X,将X分解成1~X的因子数列,前一个数可以整数后一个数,求满足条件的最大链长以及有多少条这样长的链。
思路一:
自己的解答:
首先求出所有的因子,排序,然后定义一个length数组和tot数组,length[i]表示从第i个因子到最后一个因子的最大链长,tot[i]表示第i个因子到最后一个因子的最大链长的种类,要求length[0]和tot[0]
已知length[last] = 0,tot[last] = 1(即最后一个因子的链长记为0,这里记为0的话,最后就不用减一,因为题目中第一个因子1不计入链长,数目记为1)
然后就是从后往前的递推式:可以看个例子:
n = 100
下标 0 1 2 3 4 5 6 7 8
因子 1 2 4 5 10 20 25 50 100
length 4 3 2 3 2 1 2 1 0
因子50,100可以整除50,那么length[(50)] = length[(100)] + 1 = 1
因子25,50可以整除25,那么length[(25)] = length[(50)] + 1 = 2
同理可求出上述的length数组
递推式就是length[i] = length[j] + 1(其中下标为j的因子是最小的可以整除下标为i的因子)
然后就可以推出tot数组
tot数组就相当于length从后往前有多少个0 1 2 3 4的序列
n = 100
下标 0 1 2 3 4 5 6 7 8
因子 1 2 4 5 10 20 25 50 100
length 4 3 2 3 2 1 2 1 0
tot 6 3 1 3 2 1 1 1 1
1、对于因子50的length=1,因子100的length=0,且100整除50,所以tot[(50)]=tot[(100)]=1 相当于从50开始到最后只有一条路,就是50,100
2、对于因子25的length=2,因子50的length=1,且50整除25,所以tot[(25)] = tot[(50)] = 1 相当于从25开始到最后只有一条路,就是25,50,100‘
3、对于因子20的length=1,因子100的length=0,且100整除20,所以tot[(20)] = tot[(100)] = 1 相当于从20开始只有一条路,就是20,100
4、对于因子10的length=2,因子20和50的length=1,且20和50均整除10,所以tot[(10)]=tot[(50)]+tot[(20)]=2 相当于从10开始有两条路,是10,20,100或者10,50,100
5、对于因子5的length=3,因子10和25的length=2,且10和25均整除5,所以tot[(5)]=tot[(10)]+tot[(25)]=3 相当于从5开始有三条路,是5,10,20,100或者5,10,50,100或者5,25,50,100
6、对于因子4的length=2,因子20和50的length=1,且20整除4,50不整除4,所以tot[(4)]=tot[(20)]=1 相当于从4开始有一条路,是4,20,100
7、对于因子2的length=3,因子4和10和25的length=1,且4和10整除2,25不整除2,所以tot[(2)]=tot[(4)]+tot[(10)]=3 相当于从2开始有三条路,是2,4,20,100或者2,10,20,100或者2,10,50,100
8、对于因子1的length=4,因子2和5的length=3,且2和5均整除1,所以tot[(1)]=tot[(2)]+tot[(5)]=6 相当于从1开始有六条路,是1,2,10,20,100或者1,2,10,50,100或者1,2,4,20,100或者1,5,10,20,100或者1,5,10,50,100或者1,5,25,50,100
递推式:tot[i] = sum(tot[j]) 其中第j个因子的length=第i个因子的length-1,并且第j个因子整除第i个因子
上述递推式文字说明比较繁琐,但是理解之后就特别简单,抓紧题目的意思,后一个因子整除前一个因子,然后递推式就可以想出来了。
1 #include2 #include 3 #include 4 #include 5 #include 6 #include 7 #include<set> 8 #include
思路二:
网上常规方法,直接求出所有素因子,然后素因子的数目就是链长,不难理解,每次递增的时候,前一个因子乘上一个素因子,直到所有素因子乘完,就到达n了
具体的数目就是这些素因子的排列组合的数目,比如100=2*2*5*5,素因子4个,排列组合次数为4!/(2!*2!) = 6,就是简单的组合数学
代码随便在网上找就行了,这里就不赘述了