PaddlePaddle一步一步预测波士顿房价

PaddlePaddle一步一步预测波士顿房价

如何开始

针对PaddlePaddle新手入门的阅读顺序,本人建议先阅读Fluid编程指南,然后再看快速入门,在针对上一篇搭建简单网络之后,本次为大家解读一下快速入门-线性回归,个人感觉目录的名有点问题,线性回归应该改为房价预测,才能与数字识别对应上,哈哈。

现实问题

房价是大家都关心的事情,但是房价由哪些因素决定,在已知一些因素之后房价大概是多少?我们需要使用PaddlePaddle解决线性回归的问题。

转换为PaddlePaddle的问题

加载房价数据,使用PaddlePaddle定义全连接网络(线性回归模型),加载数据到网络中进行学习,通过前向计算和反向传播后(PaddlePaddle已封装好),得到优化后参数,给定一些房子相关信息,加载优化后的参数,得到预测的房价。

使用PyCharm创建工程、显示数据

PaddlePaddle一步一步预测波士顿房价_第1张图片
创建InferBostonHousingPrice工程,使用之前已有的环境,新建train.py文件测试paddlepaddle是否可用。

import paddle.fluid

PaddlePaddle一步一步预测波士顿房价_第2张图片

显示波士顿郊区房价数据

train_reader = paddle.dataset.uci_housing.train()
test_reader = paddle.dataset.uci_housing.test()
print(paddle.dataset.uci_housing.feature_names)

print("-----------train---------------")
for i, data in enumerate(train_reader()):
    print(i, data)

print("-----------test---------------")
for i, data in enumerate(test_reader()):
    print(i, data)

一共506个数据,404个训练数据,102个测试数据。

原版的说明文件大家可以参考一下:

  1. Title: Boston Housing Data

  2. Sources:
    (a) Origin: This dataset was taken from the StatLib library which is
    maintained at Carnegie Mellon University.
    (b) Creator: Harrison, D. and Rubinfeld, D.L. ‘Hedonic prices and the
    demand for clean air’, J. Environ. Economics & Management,
    vol.5, 81-102, 1978.
    © Date: July 7, 1993

  3. Past Usage:

    • Used in Belsley, Kuh & Welsch, ‘Regression diagnostics …’, Wiley,
      1980. N.B. Various transformations are used in the table on
      pages 244-261.
    • Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning.
      In Proceedings on the Tenth International Conference of Machine
      Learning, 236-243, University of Massachusetts, Amherst. Morgan
      Kaufmann.
  4. Relevant Information:

    Concerns housing values in suburbs of Boston.

  5. Number of Instances: 506

  6. Number of Attributes: 13 continuous attributes (including “class”
    attribute “MEDV”), 1 binary-valued attribute.

  7. Attribute Information:

    1. CRIM per capita crime rate by town
    2. ZN proportion of residential land zoned for lots over
      25,000 sq.ft.
    3. INDUS proportion of non-retail business acres per town
    4. CHAS Charles River dummy variable (= 1 if tract bounds
      river; 0 otherwise)
    5. NOX nitric oxides concentration (parts per 10 million)
    6. RM average number of rooms per dwelling
    7. AGE proportion of owner-occupied units built prior to 1940
    8. DIS weighted distances to five Boston employment centres
    9. RAD index of accessibility to radial highways
    10. TAX full-value property-tax rate per $10,000
    11. PTRATIO pupil-teacher ratio by town
    12. B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks
      by town
    13. LSTAT % lower status of the population
    14. MEDV Median value of owner-occupied homes in $1000’s
  8. Missing Attribute Values: None.

定义网络

# 将数据转换为feed所需的数据类型
list = []
for data in train_reader():
    list.append(data)
    
# 定义网络
x = fluid.layers.data(name="x", shape=[13], dtype='float32')
y = fluid.layers.data(name="y", shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
# 定义损失函数
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)

加载数据并进行训练

feeder = fluid.DataFeeder(place=cpu, feed_list=[x, y])

for i in range(1000):
    avg_loss_value = exe.run(
        None,
        feed=feeder.feed(list),
        fetch_list=[avg_cost])

参数保存到文件

model_path = "./infer_bhp_model"
fluid.io.save_params(executor=exe, dirname=model_path, main_program=None)

选择预测所需的数据

在原数据集中任意选择几个样本,作为模拟房价的13个变量的值


# 定义数据

new_x = numpy.array([[-0.0405441 ,  0.06636364, -0.32356227, -0.06916996, -0.03435197,
        0.05563625, -0.03475696,  0.02682186, -0.37171335, -0.21419304,
       -0.33569506,  0.10143217, -0.21172912]]).astype('float32')
#24
new_x1 = numpy.array([[-0.03894423, -0.11363636, -0.0944567 ,
-0.06916996, -0.07138901,0.08476061,
 0.11663336, -0.09250268, -0.19780031,
 -0.04625411,0.26004962,  0.09603603, -0.08921256]]).astype('float32')

#27.5
new_x2 = numpy.array([[-0.01460746, -0.11363636,  0.30950225,
         -0.06916996,  0.10350811,-0.07753102,
         0.29583006, -0.12788538, -0.19780031,
         -0.00999457,-0.39952485, -0.02154428, -0.01719269]]).astype('float32')
#19.1

定义网络进行预测

# 定义网络
x = fluid.layers.data(name="x", shape=[13], dtype='float32')
y = fluid.layers.data(name="y", shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)

# 参数初始化
cpu = fluid.core.CPUPlace()
exe = fluid.Executor(cpu)

param_path = "./infer_bhp_model"
prog = fluid.default_main_program()
fluid.io.load_params(executor=exe, dirname=param_path,
                     main_program=prog)

outs = exe.run(
    feed={'x': new_x2},
    fetch_list=[y_predict.name])

print(outs)

完整代码

文件train.py

import paddle
import paddle.fluid as fluid
import numpy

# 显示数据

train_reader = paddle.dataset.uci_housing.train()
test_reader = paddle.dataset.uci_housing.test()

print(paddle.dataset.uci_housing.feature_names)

print("-----------train---------------")
for i, data in enumerate(train_reader()):
    print(i, data)

print("-----------test---------------")
for i, data in enumerate(test_reader()):
    print(i, data)


#
list = []
for data in train_reader():
    list.append(data)

# 定义网络
x = fluid.layers.data(name="x", shape=[13], dtype='float32')
y = fluid.layers.data(name="y", shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
# 定义损失函数
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
# 参数初始化
cpu = fluid.core.CPUPlace()
exe = fluid.Executor(cpu)
exe.run(fluid.default_startup_program())

feeder = fluid.DataFeeder(place=cpu, feed_list=[x, y])

for i in range(1000):
    avg_loss_value = exe.run(
        None,
        feed=feeder.feed(list),
        fetch_list=[avg_cost])
print(avg_loss_value)
model_path = "./infer_bhp_model"
fluid.io.save_params(executor=exe, dirname=model_path, main_program=None)

文件infer.py


import paddle.fluid as fluid
import numpy

# 定义数据

new_x = numpy.array([[-0.0405441 ,  0.06636364, -0.32356227, -0.06916996, -0.03435197,
        0.05563625, -0.03475696,  0.02682186, -0.37171335, -0.21419304,
       -0.33569506,  0.10143217, -0.21172912]]).astype('float32')
#24
new_x1 = numpy.array([[-0.03894423, -0.11363636, -0.0944567 ,
-0.06916996, -0.07138901,0.08476061,
 0.11663336, -0.09250268, -0.19780031,
 -0.04625411,0.26004962,  0.09603603, -0.08921256]]).astype('float32')

#27.5
new_x2 = numpy.array([[-0.01460746, -0.11363636,  0.30950225,
         -0.06916996,  0.10350811,-0.07753102,
         0.29583006, -0.12788538, -0.19780031,
         -0.00999457,-0.39952485, -0.02154428, -0.01719269]]).astype('float32')
#19.1

# 定义网络
x = fluid.layers.data(name="x", shape=[13], dtype='float32')
y = fluid.layers.data(name="y", shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)

# 参数初始化
cpu = fluid.core.CPUPlace()
exe = fluid.Executor(cpu)

param_path = "./infer_bhp_model"
prog = fluid.default_main_program()
fluid.io.load_params(executor=exe, dirname=param_path,
                     main_program=prog)

outs = exe.run(
    feed={'x': new_x2},
    fetch_list=[y_predict.name])

print(outs)

结果:
PaddlePaddle一步一步预测波士顿房价_第3张图片

你可能感兴趣的:(PaddlePaddle)