新人学步:hbase与hadoop搭建过程

    因为工作需要,我们使用hbase + hadoop存储基于用户内容的数据(UGC),本文将描述如何逐步搭建此平台,仅作参考。

 

1. 环境

    操作系统:Red hat 6.3,300G硬盘,双核CPU

    JAVA:JDK1.6                    

    HBASE:hbase-0.98.1

    Hadoop:hadoop-2.2.0

 

    现在我们使用3台机器(虚拟机),来搭建hadoop环境,如下为机器列表,首先我们需要在三台机器上hosts文件中都增加如下信息,同时需要注意,局域网内的机器都需要设定网卡为“静态IP”,以防止机器重启后IP不断变化。本例中所有机器使用root用户操作。

127.0.0.1    localhost
::1    localhost
192.168.0.110    node1.hadoop.virtual
192.168.0.111    node2.hadoop.virtual
192.168.0.112    node2.hadoop.virtual
##需要注意当前的机器名
## 192.168.0.110(本机IP)    机器名

 

    当然使用“hostname”转义成IP并非必须的,我们也可以直接在hadoop、hbase的配置文件使用IP,不过本人为了便于定位node所在的机器位置,就“额外”的在hosts中增加了上述配置。

 

2. SSH

    hadoop、hbase中使用ssh实现无密码登录,在hadoop集群启动时将会依次跳转到集群中所有的机器上启动相应的进程,所以我们首先配置ssh授权信息(请首先安装ssh-keygen客户端,关于ssh客户端配置请参见其他文档):

ssh-keygen -t rsa

    一路回车,均采用默认配置,无password设置。最终会在:/root/.ssh目录下生成id_rsa.pub(如果使用其他用户登录,则保存在~/.ssh目录下),这个文件中所包含的的就是登陆本机所需要的rsa-pub值。我们依次在上述三台机器上执行ssh-keygen命令。

 

     我们把三台机器生成的三个rsa-pub值都依次写入每台机器的/root/.ssh/authorized_keys文件中,很多人忘记把本机的rsa-pub值写入自己的authorized_keys,这会导致本机的hadoop实例无法启动。

 

3. JDK安装

    现在JDK1.6+版本,然后直接安装,并在配置JAVA_HOME,本实例中JDK安装在/opt/app目录下。在/etc/profile文件的尾部增加如下配置:

## set java
JAVA_HOME=/opt/app/jdk1.6.0_45
PATH=$PATH:/$JAVA_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
JRE_HOME=$JAVA_HOME/jre
export JAVA_HOME PATH CLASSPATH JRE_HOME
export LD_LIBRARY_PATH=/usr/local/lib

 

    配置完毕之后,执行“source /etc/profile”使环境变量生效;如果你的机器上已经安装了其他的JDK(比如openJDK),你应该首先卸载或者禁用其启动文件,然后再执行上述“source”命令。(比如,使用"whereis java"指令查找出java启动文件所在位置,然后删除它,它可能位于“/usr/bin/java”中)

 

    建议三台机器中,JDK、hadoop、hbase的安装目录都相同,这样排查问题和文件配置都会非常的方便。

 

4. ulimit设置

    因为hadoop和hbase在运行时需要打开很多的文件,同时在面向众多Client连接时也会消耗文件描述符,所以我们需要简单的将ulimit设置的稍微大一些(默认为1024,显然太小了),在/etc/security/limits.conf文件的尾部增加:

*       soft    nofile          20480
*       hard    nofile          20480

 

    此外还需要检测/etc/profile文件中是否也指定了“ulimit”选项,如果有,可以考虑暂时先移除它,ulimit参数将会在root用户重登陆后生效。关于linux下如何调整机器支撑的最大文件打开个数以及线程的并发数,请参见其他文档。

 

5. hadoop搭建与配置

    hadoop-2.2是目前相对稳定和“低调”的版本,不过hadoop的版本简直是“不尽其数”,为了配合hbase-0.98,我们需要使用hadoop-2.2版本作为支撑;不过如果条件允许,建议使用hadoop-2.4+,因为hbase-1.0.x里程碑版本将最低支持到hadoop-2.4。【hbase与hadoop版本对应表】

 

    通过apache网站下载hadoop-2.2.tar.gz文件包,解压到指定目录,本实例中将hadoop安装在“/opt/app”目录下;我们首先在一台机器上安装hadoop并配置,稍后再把依次同步到另外两台机器即可。

 

    我们约定,node1.hadoop.virtual作为namenode,其他两台作为datanode,其中node2.hadoop.virtual作为辅助master(即secondarynamenode),本文中将不引入yarn(mapreduce),所以我们暂时不关心resourceManager等进程。同时约定hadoop与hbase中关于file blocksize的设定保持一致,为128M。我们依次配置如下文件(${hadoop}/etc/hadoop):

 

    1) masters文件:此文件只需要放置在namenode和secondarynamenode上,datanode上不需要此文件;masters文件用来指定“secondarynamenode”的地址;集群中,通常需要一个secondarynamenode。

node2.hadoop.virtual

    2) slaves文件:用来指定datanode的地址,只有datanode上需要此文件;

node1.hadoop.virtual
node2.hadoop.virtual
node3.hadoop.virtual

     如果你不希望node1同时作为datanode和namenode两种角色,你可以在slaves文件中移除它。

 

    3) hdfs-site.xml文件:hadoop主要有hdfs和mapreduce两种核心特性,hdfs-site.xml用来配置hdfs特性。如下配置参数,仅供参考。






	
	
		dfs.replication
		3
		
		
	
	
		dfs.blocksize
		128m
		
	
	
	
		dfs.client.block.write.retries
		3
		
		
	
	
		dfs.heartbeat.interval
		3
		
	

	
		dfs.namenode.replication.interval
		3
		
	
	
		dfs.namenode.logging.level
		info
		
	
	
		dfs.datanode.handler.count
		32
		
		
	
	
		dfs.namenode.handler.count
		32
		
		
	
	
		dfs.namenode.name.dir
		/data/hadoop/dfs/name
		
		
	
		
		dfs.namenode.name.dir.restore
		false
		
	
	
		dfs.datanode.data.dir
		/data/hadoop/dfs/data
		
		
	
	
		dfs.namenode.checkpoint.dir
		/data/hadoop/dfs/namesecondary
		
	
	

 

    4) core-site.xml:hadoop全局配置





	
	
		fs.default.name
		hdfs://node1.hadoop.virtual:8020
		
	
	
		file.blocksize
		134217728
		
	
	
		hadoop.tmp.dir
		/var/hadoop/tmp
	
	
		file.replication
		2
		
	

	
	
		hadoop.security.authorization
		false
		
	
	
		io.file.buffer.size
		131072
		
	
	
		io.bytes.per.checksum
		512
		
	
	
		io.skip.checksum.errors
		false
		
	
	
		io.compression.codecs
		
		
		
	
	
		io.seqfile.local.dir
		/data/hadoop/io/local
		
		
		
		
	
	
		fs.trash.interval
		10080
		
	

	
	
		io.map.index.skip
		0
		
	
	
		io.map.index.interval
		128
		
	
		
		io.mapfile.bloom.size
		1048576
		
	
	
		io.mapfile.bloom.error.rate
		0.005
		
	

	
	

 

    5) hadoop-env.sh: hadoop启动脚本,这个脚本中包含了JVM参数调优以及全局性参数,为了便于参考,如下为全部信息。

# Set Hadoop-specific environment variables here.

# The only required environment variable is JAVA_HOME.  All others are
# optional.  When running a distributed configuration it is best to
# set JAVA_HOME in this file, so that it is correctly defined on
# remote nodes.

# The java implementation to use.
export JAVA_HOME=/opt/app/jdk1.6.0_45

# The jsvc implementation to use. Jsvc is required to run secure datanodes.
#export JSVC_HOME=${JSVC_HOME}

export HADOOP_CONF_DIR=${HADOOP_CONF_DIR:-"/etc/hadoop"}

# Extra Java CLASSPATH elements.  Automatically insert capacity-scheduler.
for f in $HADOOP_HOME/contrib/capacity-scheduler/*.jar; do
  if [ "$HADOOP_CLASSPATH" ]; then
    export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$f
  else
    export HADOOP_CLASSPATH=$f
  fi
done

# The maximum amount of heap to use, in MB. Default is 1000.
## 1G,every damon processor,there are about 2 ~ 4 procesors,so this value should be suitable.
export HADOOP_HEAPSIZE=1024
export HADOOP_NAMENODE_INIT_HEAPSIZE="512"

# Extra Java runtime options.  Empty by default.
## default for all ,will append to name_node/data_node OPTS
export HADOOP_OPTS="$HADOOP_OPTS -Djava.net.preferIPv4Stack=true -XX:MaxPermSize=256M -XX:SurvivorRatio=6 -XX:+UseConcMarkSweepGC -XX:MaxTenuringThreshold=3 -XX:CMSInitiatingOccupancyFraction=70 -XX:+UseCMSCompactAtFullCollection"

# Command specific options appended to HADOOP_OPTS when specified
export HADOOP_NAMENODE_OPTS="-Dhadoop.security.logger=${HADOOP_SECURITY_LOGGER:-INFO,RFAS} -Dhdfs.audit.logger=${HDFS_AUDIT_LOGGER:-INFO,NullAppender} $HADOOP_NAMENODE_OPTS -Xmx2048M"

export HADOOP_DATANODE_OPTS="-Dhadoop.security.logger=ERROR,RFAS $HADOOP_DATANODE_OPTS -Xmx2048M"

export HADOOP_SECONDARYNAMENODE_OPTS="-Dhadoop.security.logger=${HADOOP_SECURITY_LOGGER:-INFO,RFAS} -Dhdfs.audit.logger=${HDFS_AUDIT_LOGGER:-INFO,NullAppender} $HADOOP_SECONDARYNAMENODE_OPTS -Xmx2048M"

# The following applies to multiple commands (fs, dfs, fsck, distcp etc)
export HADOOP_CLIENT_OPTS="-Xmx512m $HADOOP_CLIENT_OPTS"
#HADOOP_JAVA_PLATFORM_OPTS="-XX:-UsePerfData $HADOOP_JAVA_PLATFORM_OPTS"

# On secure datanodes, user to run the datanode as after dropping privileges
export HADOOP_SECURE_DN_USER=${HADOOP_SECURE_DN_USER}

# Where log files are stored.  $HADOOP_HOME/logs by default.
export HADOOP_LOG_DIR=/data/hadoop/logs/hadoop

# Where log files are stored in the secure data environment.
export HADOOP_SECURE_DN_LOG_DIR=${HADOOP_LOG_DIR}/${HADOOP_HDFS_USER}

# The directory where pid files are stored. /tmp by default.
# NOTE: this should be set to a directory that can only be written to by 
#       the user that will run the hadoop daemons.  Otherwise there is the
#       potential for a symlink attack.
export HADOOP_PID_DIR=/var/hadoop/pids
export HADOOP_SECURE_DN_PID_DIR=${HADOOP_PID_DIR}

# A string representing this instance of hadoop. $USER by default.
export HADOOP_IDENT_STRING=$USER

 

    配置文件调整结束后,将此hadoop-2.2安装文件全部copy到其他两台机器上(node2,node3)上;然在node1上启动集群,需要注意,在启动集群之前需要在“namenode”和“secondarynamenode”上指定format指令:

#在bin目录下
> ./hadoop namenode -format 

 

    然后依次运行${hadoop}/sbin目录下的“start-dfs.sh”。如果集群启动过程中,没有任何异常,可以依次在每台机器上执行“jps”指令查看基于JMX的java进程,你或许会看到如下字样:

[[email protected] ~]# jps
19922 DataNode
19757 NameNode
21569 Jps

[[email protected] hadoop]# jps
31627 Jps
31466 SecondaryNameNode
31324 DataNode

[[email protected] ~]# jps
15913 DataNode
23508 Jps
16530 NodeManager

 

    如果某台机器上,namenode、datanode等进程启动不符合预期,请到日志文件中查看原因(本实例中,日志位于:/data/hadoop/logs)

 

6. hbase搭建与配置

    如果上述hadoop环境就绪后,我们就可以搭建hbase集群了,不过此处需要提醒,并不是hbase存储必须使用hadoop,它可以基于本地文件系统或者其他任何hbase支持远端文件系统。

    我们将hbase-0.98安装文件解压到/opt/app目录下,和hadoop目录平级,便于管理。

    1) hbase-core.xml:hbase核心配置




    
        hbase.regionserver.port
        60020
        
    
    
        hbase.hregion.max.filesize
        2147483648
        
    
    
        hbase.hregion.memstore.flush.size
        134217728
        
    
    
        hbase.regionserver.handler.count
        32
        
        
        
    
    
        hbase.regionserver.lease.period
        120000
        
    
    
        hbase.rootdir
        hdfs://node1.hadoop.virtual:8020/hbase
        
    
    
        hbase.cluster.distributed
        true
    
        
    
        hbase.zookeeper.quorum
        node1.hadoop.virtual,node2.hadoop.virtual,node2.hadoop.virtual
    
	
	
	
    
        hbase.dynamic.jars.dir
        hdfs://node1.hadoop.virtual:8020/hbase-extlib
    

    
        zookeeper.session.timeout
        30000
        
    
    
        zookeeper.znode.parent
        /online-hbase
    

 

    hadoop并不依赖于zookeeper来保存META信息,甚至hadoop本身不具有master选举的特性;不过hbase则不同,hbase将会把META信息保存在zookeeper中,以及使用zookeeper来感知reginserver的存活状态、HMaster选举等等,所以在搭建hbase之前,需要一个即备的zookeeper集群,具体zookeeper的搭建此处将不再赘言。

 

    2) regionservers文件:配置集群中regionserver的列表,我们将会在如下三台机器上搭建hbase集群

node1.hadoop.virtual
node2.hadoop.virtual
node2.hadoop.virtual

 

    3) hbase-env.sh:hbase启动脚本,其中包含了JVM参数选项,为了便于查阅,此处为全文。

# Set environment variables here.

# This script sets variables multiple times over the course of starting an hbase process,
# so try to keep things idempotent unless you want to take an even deeper look
# into the startup scripts (bin/hbase, etc.)

# The java implementation to use.  Java 1.6 required.
export JAVA_HOME=/opt/app/jdk1.6.0_45

# Extra Java CLASSPATH elements.  Optional.
export HBASE_CLASSPATH="/opt/app/hbase-0.98.1/extlib/hadoop-ext-1.0.0-SNAPSHOT.jar"

# The maximum amount of heap to use, in MB. Default is 1000.
# export HBASE_HEAPSIZE=1000

# Extra Java runtime options.
# Below are what we set by default.  May only work with SUN JVM.
# For more on why as well as other possible settings,
# see http://wiki.apache.org/hadoop/PerformanceTuning
export HBASE_OPTS="-XX:+UseConcMarkSweepGC -XX:MaxPermSize=256M -XX:SurvivorRatio=6 -XX:+UseConcMarkSweepGC -XX:MaxTenuringThreshold=5 -XX:CMSInitiatingOccupancyFraction=70 -XX:+UseCMSCompactAtFullCollection"

# Uncomment one of the below three options to enable java garbage collection logging for the server-side processes.

# This enables basic gc logging to the .out file.
# export SERVER_GC_OPTS="-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCDateStamps"

# This enables basic gc logging to its own file.
# If FILE-PATH is not replaced, the log file(.gc) would still be generated in the HBASE_LOG_DIR .
# export SERVER_GC_OPTS="-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCDateStamps -Xloggc:"

# This enables basic GC logging to its own file with automatic log rolling. Only applies to jdk 1.6.0_34+ and 1.7.0_2+.
# If FILE-PATH is not replaced, the log file(.gc) would still be generated in the HBASE_LOG_DIR .
export SERVER_GC_OPTS="-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCDateStamps -Xloggc:/data/hadoop/logs/hbase/server-gc.log.$(date +%Y%m%d%H%M) -XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=1 -XX:GCLogFileSize=512M"

# Uncomment one of the below three options to enable java garbage collection logging for the client processes.

# This enables basic gc logging to the .out file.
# export CLIENT_GC_OPTS="-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCDateStamps"

# This enables basic gc logging to its own file.
# If FILE-PATH is not replaced, the log file(.gc) would still be generated in the HBASE_LOG_DIR .
# export CLIENT_GC_OPTS="-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCDateStamps -Xloggc:"

# This enables basic GC logging to its own file with automatic log rolling. Only applies to jdk 1.6.0_34+ and 1.7.0_2+.
# If FILE-PATH is not replaced, the log file(.gc) would still be generated in the HBASE_LOG_DIR .
export CLIENT_GC_OPTS="-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCDateStamps -Xloggc:/data/hadoop/logs/hbase/client-gc.log.$(date +%Y%m%d%H%M) -XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=1 -XX:GCLogFileSize=512M"

# Uncomment below if you intend to use the EXPERIMENTAL off heap cache.
# export HBASE_OPTS="$HBASE_OPTS -XX:MaxDirectMemorySize="
# Set hbase.offheapcache.percentage in hbase-site.xml to a nonzero value.


# Uncomment and adjust to enable JMX exporting
# See jmxremote.password and jmxremote.access in $JRE_HOME/lib/management to configure remote password access.
# More details at: http://java.sun.com/javase/6/docs/technotes/guides/management/agent.html
#
export HBASE_JMX_BASE="-Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.authenticate=false"
export HBASE_MASTER_OPTS="$HBASE_MASTER_OPTS $HBASE_JMX_BASE -Dcom.sun.management.jmxremote.port=10101 -Xmx2048M -Xms2048M -XX:MaxNewSize=512M"
export HBASE_REGIONSERVER_OPTS="$HBASE_REGIONSERVER_OPTS $HBASE_JMX_BASE -Dcom.sun.management.jmxremote.port=10102 -Xmx4096M -Xms4096M -XX:MaxNewSize=1024M"
# export HBASE_THRIFT_OPTS="$HBASE_THRIFT_OPTS $HBASE_JMX_BASE -Dcom.sun.management.jmxremote.port=10103"
# export HBASE_ZOOKEEPER_OPTS="$HBASE_ZOOKEEPER_OPTS $HBASE_JMX_BASE -Dcom.sun.management.jmxremote.port=10104"
# export HBASE_REST_OPTS="$HBASE_REST_OPTS $HBASE_JMX_BASE -Dcom.sun.management.jmxremote.port=10105"

# File naming hosts on which HRegionServers will run.  $HBASE_HOME/conf/regionservers by default.
# export HBASE_REGIONSERVERS=${HBASE_HOME}/conf/regionservers

# Uncomment and adjust to keep all the Region Server pages mapped to be memory resident
#HBASE_REGIONSERVER_MLOCK=true
#HBASE_REGIONSERVER_UID="hbase"

# File naming hosts on which backup HMaster will run.  $HBASE_HOME/conf/backup-masters by default.
# export HBASE_BACKUP_MASTERS=${HBASE_HOME}/conf/backup-masters

# Extra ssh options.  Empty by default.
# export HBASE_SSH_OPTS="-o ConnectTimeout=1 -o SendEnv=HBASE_CONF_DIR"

# Where log files are stored.  $HBASE_HOME/logs by default.
export HBASE_LOG_DIR=/data/hadoop/logs/hbase

# Enable remote JDWP debugging of major HBase processes. Meant for Core Developers 
# export HBASE_MASTER_OPTS="$HBASE_MASTER_OPTS -Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=8070"
# export HBASE_REGIONSERVER_OPTS="$HBASE_REGIONSERVER_OPTS -Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=8071"
# export HBASE_THRIFT_OPTS="$HBASE_THRIFT_OPTS -Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=8072"
# export HBASE_ZOOKEEPER_OPTS="$HBASE_ZOOKEEPER_OPTS -Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=8073"

# A string representing this instance of hbase. $USER by default.
# export HBASE_IDENT_STRING=$USER

# The scheduling priority for daemon processes.  See 'man nice'.
# export HBASE_NICENESS=10

# The directory where pid files are stored. /tmp by default.
export HBASE_PID_DIR=/var/hadoop/pids

# Seconds to sleep between slave commands.  Unset by default.  This
# can be useful in large clusters, where, e.g., slave rsyncs can
# otherwise arrive faster than the master can service them.
# export HBASE_SLAVE_SLEEP=0.1

# Tell HBase whether it should manage it's own instance of Zookeeper or not.
export HBASE_MANAGES_ZK=false

# The default log rolling policy is RFA, where the log file is rolled as per the size defined for the 
# RFA appender. Please refer to the log4j.properties file to see more details on this appender.
# In case one needs to do log rolling on a date change, one should set the environment property
# HBASE_ROOT_LOGGER to ",DRFA".
# For example:
# HBASE_ROOT_LOGGER=INFO,DRFA
# The reason for changing default to RFA is to avoid the boundary case of filling out disk space as 
# DRFA doesn't put any cap on the log size. Please refer to HBase-5655 for more context.

 

 

    到此为之,可以把调整配置之后的hbase安装包,在三台机器上部署,并在bin目录下,我们将node3作为HMaster,所以需要在node3上执行“start-hbase.sh”,此后hbase集群将会全部启动。

 

    可以使用jps指令查看节点是否启动正常,在node3上将会看到“HMaster,HRegionServer”两个进程,其他2个node上只会看到“HRegionServer”进程。

你可能感兴趣的:(hadoop)