DualPivotQuicksort源码解析

我们可以直接调用Arrays.sort()来排序一个数组,跟踪下去实际上调用的是DualPivotQuicksort中的sort(a,left,rigth,null,0,0)

 

int sort(对int类型的数组进行的排序)

    /**
     * Sorts the specified range of the array using the given
     * workspace array slice if possible for merging
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     * @param work a workspace array (slice)
     * @param workBase origin of usable space in work array
     * @param workLen usable size of work array
     */
//private static final int QUICKSORT_THRESHOLD = 286;
//整形排序:如果排序长度小于286,这直接进入双轴快排
//若大于则先判断数组是否大致有序,如果数组中有序段个数小于67个,这进行归并(合并)排序
static void sort(int[] a, int left, int right,
                     int[] work, int workBase, int workLen) {
        // Use Quicksort on small arrays
        if (right - left < QUICKSORT_THRESHOLD) {
            sort(a, left, right, true);
            return;
        }

        /*
         * Index run[i] is the start of i-th run
         * (ascending or descending sequence).
         */
        //有序段的开始下标放在run数组里,第0位为left
        //例如[1,2,3,1,2,1],那么run[1]为3,run[2]为5
        int[] run = new int[MAX_RUN_COUNT + 1];
        int count = 0; run[0] = left;

        // Check if the array is nearly sorted
        for (int k = left; k < right; run[count] = k) {
            if (a[k] < a[k + 1]) { // ascending
                while (++k <= right && a[k - 1] <= a[k]);
            } else if (a[k] > a[k + 1]) { // descending
                while (++k <= right && a[k - 1] >= a[k]);
                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
                    int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
                }
            } else { // equal
                for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
                    if (--m == 0) {
                        sort(a, left, right, true);
                        return;
                    }
                }
            }

            /*
             * The array is not highly structured,
             * use Quicksort instead of merge sort.
             */
            //如果有序段的个数大于67个,进行双轴快排
            if (++count == MAX_RUN_COUNT) {
                sort(a, left, right, true);
                return;
            }
        }

        // Check special cases
        // Implementation note: variable "right" is increased by 1.
        //run数组的最后两个元素为right,right + 1
        if (run[count] == right++) { // The last run contains one element
            run[++count] = right;
        } else if (count == 1) { // The array is already sorted
            return;
        }

        // Determine alternation base for merge
        //判断归并排序的次数为奇数次还是偶数次,odd为0代表奇数次,odd为1代表偶数次
        byte odd = 0;
        for (int n = 1; (n <<= 1) < count; odd ^= 1);

        // Use or create temporary array b for merging
        //初始化辅助空间
        int[] b;                 // temp array; alternates with a
        int ao, bo;              // array offsets from 'left'
        int blen = right - left; // space needed for b
        if (work == null || workLen < blen || workBase + blen > work.length) {
            work = new int[blen];
            workBase = 0;
        }
        //若为奇数次,则先交换原数组和辅助数组,即a和b
        //因为每一次归并排序的最后都需要再交换一次数组,若最终交换次数为奇数次,则提前交换一次可                
        //以保证a指向的是原数组
        //至于ao,和bo是a和b两个数组互相映射的偏移量
        if (odd == 0) {
            System.arraycopy(a, left, work, workBase, blen);
            b = a;
            bo = 0;
            a = work;
            ao = workBase - left;
        } else {
            b = work;
            ao = 0;
            bo = workBase - left;
        }

        // Merging
        //归并排序(这一段个人感觉偏难,但是可以尝试找一个具体的数组变量跟踪,感叹源码的牛b,自己                     
        //感觉看懂也写不出来)
        for (int last; count > 1; count = last) {
            //p和q分别指向两个要合并的相邻的数组,hi表示第三个有序段的开始,然后进行两两合并
            for (int k = (last = 0) + 2; k <= count; k += 2) {
                int hi = run[k], mi = run[k - 1];
                //将排序结果映射到b数组上
                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
                    if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
                        b[i + bo] = a[p++ + ao];
                    } else {
                        b[i + bo] = a[q++ + ao];
                    }
                }
                //更新run数组
                run[++last] = hi;
            }
            //若count为奇数,则表明还有最后一段没有排序,将最后一段复制到b数组上(或许用                  
            //System.copy()更快,手动滑稽)
            if ((count & 1) != 0) {
                for (int i = right, lo = run[count - 1]; --i >= lo;
                    b[i + bo] = a[i + ao]
                );
                run[++last] = right;
            }
            //交换两个数组
            int[] t = a; a = b; b = t;
            int o = ao; ao = bo; bo = o;
        }
    }

    /**
     * Sorts the specified range of the array by Dual-Pivot Quicksort.
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     * @param leftmost indicates if this part is the leftmost in the range
     */
    //正式进入双轴快排
    private static void sort(int[] a, int left, int right, boolean leftmost) {
        int length = right - left + 1;

        // Use insertion sort on tiny arrays
        //若待排序个数小于47,则进行插入排序
        if (length < INSERTION_SORT_THRESHOLD) {
            //若leftmost为true则进行经典插入排序,否则进行成对插入排序
            //leftmost按字面上的意思是最左端,但我并不理解为什么是最左端就适合经典插入
            //有知道的小伙伴评论说明一下,谢谢
            if (leftmost) {
                /*
                 * Traditional (without sentinel) insertion sort,
                 * optimized for server VM, is used in case of
                 * the leftmost part.
                 */
                //经典插入排序,(比我自己写的插入排序好多了,手动哭)
                for (int i = left, j = i; i < right; j = ++i) {
                    int ai = a[i + 1];
                    while (ai < a[j]) {
                        a[j + 1] = a[j];
                        if (j-- == left) {
                            break;
                        }
                    }
                    a[j + 1] = ai;
                }
            } else {
                /*
                 * Skip the longest ascending sequence.
                 */
                //跳过有序的部分
                do {
                    if (left >= right) {
                        return;
                    }
                } while (a[++left] >= a[left - 1]);

                /*
                 * Every element from adjoining part plays the role
                 * of sentinel, therefore this allows us to avoid the
                 * left range check on each iteration. Moreover, we use
                 * the more optimized algorithm, so called pair insertion
                 * sort, which is faster (in the context of Quicksort)
                 * than traditional implementation of insertion sort.
                 */
                //成对插入排序其实就是两个元素一起插排,这样更快吗(是不是可双轴快排一样)
                for (int k = left; ++left <= right; k = ++left) {
                    int a1 = a[k], a2 = a[left];

                    if (a1 < a2) {
                        a2 = a1; a1 = a[left];
                    }
                    while (a1 < a[--k]) {
                        a[k + 2] = a[k];
                    }
                    a[++k + 1] = a1;

                    while (a2 < a[--k]) {
                        a[k + 1] = a[k];
                    }
                    a[k + 1] = a2;
                }
                int last = a[right];

                while (last < a[--right]) {
                    a[right + 1] = a[right];
                }
                a[right + 1] = last;
            }
            return;
        }

        // Inexpensive approximation of length / 7
        //根据经验得出来的步长
        int seventh = (length >> 3) + (length >> 6) + 1;

        /*
         * Sort five evenly spaced elements around (and including) the
         * center element in the range. These elements will be used for
         * pivot selection as described below. The choice for spacing
         * these elements was empirically determined to work well on
         * a wide variety of inputs.
         */
        //e3为中间元素,然后依次加减步长得出其它的e
        int e3 = (left + right) >>> 1; // The midpoint
        int e2 = e3 - seventh;
        int e1 = e2 - seventh;
        int e4 = e3 + seventh;
        int e5 = e4 + seventh;

        // Sort these elements using insertion sort
        //给所有的e进行暴力排序,e1最小,e5最大
        if (a[e2] < a[e1]) { int t = a[e2]; a[e2] = a[e1]; a[e1] = t; }

        if (a[e3] < a[e2]) { int t = a[e3]; a[e3] = a[e2]; a[e2] = t;
            if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
        }
        if (a[e4] < a[e3]) { int t = a[e4]; a[e4] = a[e3]; a[e3] = t;
            if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
            }
        }
        if (a[e5] < a[e4]) { int t = a[e5]; a[e5] = a[e4]; a[e4] = t;
            if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
                if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
                }
            }
        }

        // Pointers
        int less  = left;  // The index of the first element of center part
        int great = right; // The index before the first element of right part
        //若满足下面这个条件,则以e2和e4进行双轴快排,否则以e3进行单轴快排
        //也好理解,若非要找两个不一样的进行双轴是比较浪费时间的
        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
            /*
             * Use the second and fourth of the five sorted elements as pivots.
             * These values are inexpensive approximations of the first and
             * second terciles of the array. Note that pivot1 <= pivot2.
             */
            int pivot1 = a[e2];
            int pivot2 = a[e4];

            /*
             * The first and the last elements to be sorted are moved to the
             * locations formerly occupied by the pivots. When partitioning
             * is complete, the pivots are swapped back into their final
             * positions, and excluded from subsequent sorting.
             */
            a[e2] = a[left];
            a[e4] = a[right];

            /*
             * Skip elements, which are less or greater than pivot values.
             */
            while (a[++less] < pivot1);
            while (a[--great] > pivot2);

            /*
             * Partitioning:
             *
             *   left part           center part                   right part
             * +--------------------------------------------------------------+
             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
             * +--------------------------------------------------------------+
             *               ^                          ^       ^
             *               |                          |       |
             *              less                        k     great
             *
             * Invariants:
             *
             *              all in (left, less)   < pivot1
             *    pivot1 <= all in [less, k)     <= pivot2
             *              all in (great, right) > pivot2
             *
             * Pointer k is the first index of ?-part.
             */
            //less前面的全是小于pivot1的,great后面的全是大于pivot2的,k指向正在遍历的数
            outer:
            for (int k = less - 1; ++k <= great; ) {
                int ak = a[k];
                if (ak < pivot1) { // Move a[k] to left part
                    a[k] = a[less];
                    /*
                     * Here and below we use "a[i] = b; i++;" instead
                     * of "a[i++] = b;" due to performance issue.
                     */
                    a[less] = ak;
                    ++less;
                } else if (ak > pivot2) { // Move a[k] to right part
                    while (a[great] > pivot2) {
                        if (great-- == k) {
                            break outer;
                        }
                    }
                    
                    if (a[great] < pivot1) { // a[great] <= pivot2
                        a[k] = a[less];
                        a[less] = a[great];
                        ++less;
                    } else { // pivot1 <= a[great] <= pivot2
                        a[k] = a[great];
                    }
                    /*
                     * Here and below we use "a[i] = b; i--;" instead
                     * of "a[i--] = b;" due to performance issue.
                     */
                    a[great] = ak;
                    --great;
                }
            }

            // Swap pivots into their final positions
            a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
            a[right] = a[great + 1]; a[great + 1] = pivot2;

            // Sort left and right parts recursively, excluding known pivots
            //将less前的那一段,和great后的那一段进行递归
            sort(a, left, less - 2, leftmost);
            sort(a, great + 2, right, false);

            /*
             * If center part is too large (comprises > 4/7 of the array),
             * swap internal pivot values to ends.
             */
            //若中间的那一段太大
            if (less < e1 && e5 < great) {
                /*
                 * Skip elements, which are equal to pivot values.
                 */
                while (a[less] == pivot1) {
                    ++less;
                }

                while (a[great] == pivot2) {
                    --great;
                }

                /*
                 * Partitioning:
                 *
                 *   left part         center part                  right part
                 * +----------------------------------------------------------+
                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
                 * +----------------------------------------------------------+
                 *              ^                        ^       ^
                 *              |                        |       |
                 *             less                      k     great
                 *
                 * Invariants:
                 *
                 *              all in (*,  less) == pivot1
                 *     pivot1 < all in [less,  k)  < pivot2
                 *              all in (great, *) == pivot2
                 *
                 * Pointer k is the first index of ?-part.
                 */
                //将所有和pivot1和pivot2相等的数移到两边
                outer:
                for (int k = less - 1; ++k <= great; ) {
                    int ak = a[k];
                    if (ak == pivot1) { // Move a[k] to left part
                        a[k] = a[less];
                        a[less] = ak;
                        ++less;
                    } else if (ak == pivot2) { // Move a[k] to right part
                        while (a[great] == pivot2) {
                            if (great-- == k) {
                                break outer;
                            }
                        }
                        if (a[great] == pivot1) { // a[great] < pivot2
                            a[k] = a[less];
                            /*
                             * Even though a[great] equals to pivot1, the
                             * assignment a[less] = pivot1 may be incorrect,
                             * if a[great] and pivot1 are floating-point zeros
                             * of different signs. Therefore in float and
                             * double sorting methods we have to use more
                             * accurate assignment a[less] = a[great].
                             */
                            a[less] = pivot1;
                            ++less;
                        } else { // pivot1 < a[great] < pivot2
                            a[k] = a[great];
                        }
                        a[great] = ak;
                        --great;
                    }
                }
            }

            // Sort center part recursively
            //对中间部分进行排序
            sort(a, less, great, false);

        } else { 
            //这个是单轴快排
            // Partitioning with one pivot
            /*
             * Use the third of the five sorted elements as pivot.
             * This value is inexpensive approximation of the median.
             */
            int pivot = a[e3];

            /*
             * Partitioning degenerates to the traditional 3-way
             * (or "Dutch National Flag") schema:
             *
             *   left part    center part              right part
             * +-------------------------------------------------+
             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
             * +-------------------------------------------------+
             *              ^              ^        ^
             *              |              |        |
             *             less            k      great
             *
             * Invariants:
             *
             *   all in (left, less)   < pivot
             *   all in [less, k)     == pivot
             *   all in (great, right) > pivot
             *
             * Pointer k is the first index of ?-part.
             */
            for (int k = less; k <= great; ++k) {
                if (a[k] == pivot) {
                    continue;
                }
                int ak = a[k];
                if (ak < pivot) { // Move a[k] to left part
                    a[k] = a[less];
                    a[less] = ak;
                    ++less;
                } else { // a[k] > pivot - Move a[k] to right part
                    while (a[great] > pivot) {
                        --great;
                    }
                    if (a[great] < pivot) { // a[great] <= pivot
                        a[k] = a[less];
                        a[less] = a[great];
                        ++less;
                    } else { // a[great] == pivot
                        /*
                         * Even though a[great] equals to pivot, the
                         * assignment a[k] = pivot may be incorrect,
                         * if a[great] and pivot are floating-point
                         * zeros of different signs. Therefore in float
                         * and double sorting methods we have to use
                         * more accurate assignment a[k] = a[great].
                         */
                        a[k] = pivot;
                    }
                    a[great] = ak;
                    --great;
                }
            }

            /*
             * Sort left and right parts recursively.
             * All elements from center part are equal
             * and, therefore, already sorted.
             */
            sort(a, left, less - 1, leftmost);
            sort(a, great + 1, right, false);
        }
    }

其它类型的数组的排序过程和int大致相同,我会将不同的地方一一列出

对long的排序完全一致

short sort

/**
     * Sorts the specified range of the array using the given
     * workspace array slice if possible for merging
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     * @param work a workspace array (slice)
     * @param workBase origin of usable space in work array
     * @param workLen usable size of work array
     */
    //若待排数组长度大于3200个,则进行计数排序
    //因为short用两个字节表示所以最多表示65536个数字,因此用计数排序比较好
    static void sort(short[] a, int left, int right,
                     short[] work, int workBase, int workLen) {
        // Use counting sort on large arrays
        if (right - left > COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR) {
            //private static final int NUM_SHORT_VALUES = 1 << 16;
            int[] count = new int[NUM_SHORT_VALUES];

            for (int i = left - 1; ++i <= right;
                count[a[i] - Short.MIN_VALUE]++
            );
            for (int i = NUM_SHORT_VALUES, k = right + 1; k > left; ) {
                while (count[--i] == 0);
                short value = (short) (i + Short.MIN_VALUE);
                int s = count[i];

                do {
                    a[--k] = value;
                } while (--s > 0);
            }
        } else { // Use Dual-Pivot Quicksort on small arrays
            //进行正常的排序,和int类型的步骤一样
            doSort(a, left, right, work, workBase, workLen);
        }
    }

char的表示范围更小,采用计数排序,和short一个道理

//private static final int NUM_CHAR_VALUES = 1 << 16;
//private static final int COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR = 3200;
static void sort(char[] a, int left, int right,
                     char[] work, int workBase, int workLen) {
        // Use counting sort on large arrays
        if (right - left > COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR) {
            int[] count = new int[NUM_CHAR_VALUES];

            for (int i = left - 1; ++i <= right;
                count[a[i]]++
            );
            for (int i = NUM_CHAR_VALUES, k = right + 1; k > left; ) {
                while (count[--i] == 0);
                char value = (char) i;
                int s = count[i];

                do {
                    a[--k] = value;
                } while (--s > 0);
            }
        } else { // Use Dual-Pivot Quicksort on small arrays
            doSort(a, left, right, work, workBase, workLen);
        }
    }

byte sort

//private static final int COUNTING_SORT_THRESHOLD_FOR_BYTE = 29;
//private static final int NUM_BYTE_VALUES = 1 << 8;
//若待排数组长度大于29,则进行计数排序,若小于29则进行经典插入排序
static void sort(byte[] a, int left, int right) {
        // Use counting sort on large arrays
        if (right - left > COUNTING_SORT_THRESHOLD_FOR_BYTE) {
            int[] count = new int[NUM_BYTE_VALUES];

            for (int i = left - 1; ++i <= right;
                count[a[i] - Byte.MIN_VALUE]++
            );
            for (int i = NUM_BYTE_VALUES, k = right + 1; k > left; ) {
                while (count[--i] == 0);
                byte value = (byte) (i + Byte.MIN_VALUE);
                int s = count[i];

                do {
                    a[--k] = value;
                } while (--s > 0);
            }
        } else { // Use insertion sort on small arrays
            for (int i = left, j = i; i < right; j = ++i) {
                byte ai = a[i + 1];
                while (ai < a[j]) {
                    a[j + 1] = a[j];
                    if (j-- == left) {
                        break;
                    }
                }
                a[j + 1] = ai;
            }
        }
    }

float sort

 /**
     * Sorts the specified range of the array using the given
     * workspace array slice if possible for merging
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     * @param work a workspace array (slice)
     * @param workBase origin of usable space in work array
     * @param workLen usable size of work array
     */
    //对folat数组进行排序时会进行一些排查
    static void sort(float[] a, int left, int right,
                     float[] work, int workBase, int workLen) {
        /*
         * Phase 1: Move NaNs to the end of the array.
         */
        //跳过末尾非数字
        while (left <= right && Float.isNaN(a[right])) {
            --right;
        }
        //将所有非数字移至最后
        for (int k = right; --k >= left; ) {
            float ak = a[k];
            if (ak != ak) { // a[k] is NaN
                a[k] = a[right];
                a[right] = ak;
                --right;
            }
        }

        /*
         * Phase 2: Sort everything except NaNs (which are already in place).
         */
        //进行正常排序,步骤和整形大致相同,有一点点不一样,在后面说明
        doSort(a, left, right, work, workBase, workLen);

        /*
         * Phase 3: Place negative zeros before positive zeros.
         */
        int hi = right;

        /*
         * Find the first zero, or first positive, or last negative element.
         */
        //找到第一个0.0f
        while (left < hi) {
            int middle = (left + hi) >>> 1;
            float middleValue = a[middle];

            if (middleValue < 0.0f) {
                left = middle + 1;
            } else {
                hi = middle;
            }
        }

        /*
         * Skip the last negative value (if any) or all leading negative zeros.
         */
        //找到第一个正0.0f
        while (left <= right && Float.floatToRawIntBits(a[left]) < 0) {
            ++left;
        }

        /*
         * Move negative zeros to the beginning of the sub-range.
         *
         * Partitioning:
         *
         * +----------------------------------------------------+
         * |   < 0.0   |   -0.0   |   0.0   |   ?  ( >= 0.0 )   |
         * +----------------------------------------------------+
         *              ^          ^         ^
         *              |          |         |
         *             left        p         k
         *
         * Invariants:
         *
         *   all in (*,  left)  <  0.0
         *   all in [left,  p) == -0.0
         *   all in [p,     k) ==  0.0
         *   all in [k, right] >=  0.0
         *
         * Pointer k is the first index of ?-part.
         */
        //将所有的负0.0f移到正0.0f前面
        for (int k = left, p = left - 1; ++k <= right; ) {
            float ak = a[k];
            if (ak != 0.0f) {
                break;
            }
            if (Float.floatToRawIntBits(ak) < 0) { // ak is -0.0f
                a[k] = 0.0f;
                a[++p] = -0.0f;
            }
        }
    }

//浮点数和其它排序不同的地方在sort(float[] a, int left, int right, boolean leftmost)方法里
private static void sort(float[] a, int left, int right, boolean leftmost) {
        int length = right - left + 1;

        // Use insertion sort on tiny arrays
        if (length < INSERTION_SORT_THRESHOLD) {
            if (leftmost) {
                /*
                 * Traditional (without sentinel) insertion sort,
                 * optimized for server VM, is used in case of
                 * the leftmost part.
                 */
                for (int i = left, j = i; i < right; j = ++i) {
                    float ai = a[i + 1];
                    while (ai < a[j]) {
                        a[j + 1] = a[j];
                        if (j-- == left) {
                            break;
                        }
                    }
                    a[j + 1] = ai;
                }
            } else {
                /*
                 * Skip the longest ascending sequence.
                 */
                do {
                    if (left >= right) {
                        return;
                    }
                } while (a[++left] >= a[left - 1]);

                /*
                 * Every element from adjoining part plays the role
                 * of sentinel, therefore this allows us to avoid the
                 * left range check on each iteration. Moreover, we use
                 * the more optimized algorithm, so called pair insertion
                 * sort, which is faster (in the context of Quicksort)
                 * than traditional implementation of insertion sort.
                 */
                for (int k = left; ++left <= right; k = ++left) {
                    float a1 = a[k], a2 = a[left];

                    if (a1 < a2) {
                        a2 = a1; a1 = a[left];
                    }
                    while (a1 < a[--k]) {
                        a[k + 2] = a[k];
                    }
                    a[++k + 1] = a1;

                    while (a2 < a[--k]) {
                        a[k + 1] = a[k];
                    }
                    a[k + 1] = a2;
                }
                float last = a[right];

                while (last < a[--right]) {
                    a[right + 1] = a[right];
                }
                a[right + 1] = last;
            }
            return;
        }

        // Inexpensive approximation of length / 7
        int seventh = (length >> 3) + (length >> 6) + 1;

        /*
         * Sort five evenly spaced elements around (and including) the
         * center element in the range. These elements will be used for
         * pivot selection as described below. The choice for spacing
         * these elements was empirically determined to work well on
         * a wide variety of inputs.
         */
        int e3 = (left + right) >>> 1; // The midpoint
        int e2 = e3 - seventh;
        int e1 = e2 - seventh;
        int e4 = e3 + seventh;
        int e5 = e4 + seventh;

        // Sort these elements using insertion sort
        if (a[e2] < a[e1]) { float t = a[e2]; a[e2] = a[e1]; a[e1] = t; }

        if (a[e3] < a[e2]) { float t = a[e3]; a[e3] = a[e2]; a[e2] = t;
            if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
        }
        if (a[e4] < a[e3]) { float t = a[e4]; a[e4] = a[e3]; a[e3] = t;
            if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
            }
        }
        if (a[e5] < a[e4]) { float t = a[e5]; a[e5] = a[e4]; a[e4] = t;
            if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
                if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
                }
            }
        }

        // Pointers
        int less  = left;  // The index of the first element of center part
        int great = right; // The index before the first element of right part

        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
            /*
             * Use the second and fourth of the five sorted elements as pivots.
             * These values are inexpensive approximations of the first and
             * second terciles of the array. Note that pivot1 <= pivot2.
             */
            float pivot1 = a[e2];
            float pivot2 = a[e4];

            /*
             * The first and the last elements to be sorted are moved to the
             * locations formerly occupied by the pivots. When partitioning
             * is complete, the pivots are swapped back into their final
             * positions, and excluded from subsequent sorting.
             */
            a[e2] = a[left];
            a[e4] = a[right];

            /*
             * Skip elements, which are less or greater than pivot values.
             */
            while (a[++less] < pivot1);
            while (a[--great] > pivot2);

            /*
             * Partitioning:
             *
             *   left part           center part                   right part
             * +--------------------------------------------------------------+
             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
             * +--------------------------------------------------------------+
             *               ^                          ^       ^
             *               |                          |       |
             *              less                        k     great
             *
             * Invariants:
             *
             *              all in (left, less)   < pivot1
             *    pivot1 <= all in [less, k)     <= pivot2
             *              all in (great, right) > pivot2
             *
             * Pointer k is the first index of ?-part.
             */
            outer:
            for (int k = less - 1; ++k <= great; ) {
                float ak = a[k];
                if (ak < pivot1) { // Move a[k] to left part
                    a[k] = a[less];
                    /*
                     * Here and below we use "a[i] = b; i++;" instead
                     * of "a[i++] = b;" due to performance issue.
                     */
                    a[less] = ak;
                    ++less;
                } else if (ak > pivot2) { // Move a[k] to right part
                    while (a[great] > pivot2) {
                        if (great-- == k) {
                            break outer;
                        }
                    }
                    if (a[great] < pivot1) { // a[great] <= pivot2
                        a[k] = a[less];
                        a[less] = a[great];
                        ++less;
                    } else { // pivot1 <= a[great] <= pivot2
                        a[k] = a[great];
                    }
                    /*
                     * Here and below we use "a[i] = b; i--;" instead
                     * of "a[i--] = b;" due to performance issue.
                     */
                    a[great] = ak;
                    --great;
                }
            }

            // Swap pivots into their final positions
            a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
            a[right] = a[great + 1]; a[great + 1] = pivot2;

            // Sort left and right parts recursively, excluding known pivots
            sort(a, left, less - 2, leftmost);
            sort(a, great + 2, right, false);

            /*
             * If center part is too large (comprises > 4/7 of the array),
             * swap internal pivot values to ends.
             */
            if (less < e1 && e5 < great) {
                /*
                 * Skip elements, which are equal to pivot values.
                 */
                while (a[less] == pivot1) {
                    ++less;
                }

                while (a[great] == pivot2) {
                    --great;
                }

                /*
                 * Partitioning:
                 *
                 *   left part         center part                  right part
                 * +----------------------------------------------------------+
                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
                 * +----------------------------------------------------------+
                 *              ^                        ^       ^
                 *              |                        |       |
                 *             less                      k     great
                 *
                 * Invariants:
                 *
                 *              all in (*,  less) == pivot1
                 *     pivot1 < all in [less,  k)  < pivot2
                 *              all in (great, *) == pivot2
                 *
                 * Pointer k is the first index of ?-part.
                 */
                outer:
                for (int k = less - 1; ++k <= great; ) {
                    float ak = a[k];
                    if (ak == pivot1) { // Move a[k] to left part
                        a[k] = a[less];
                        a[less] = ak;
                        ++less;
                    } else if (ak == pivot2) { // Move a[k] to right part
                        while (a[great] == pivot2) {
                            if (great-- == k) {
                                break outer;
                            }
                        }
                        if (a[great] == pivot1) { // a[great] < pivot2
                            a[k] = a[less];
                            /*
                             * Even though a[great] equals to pivot1, the
                             * assignment a[less] = pivot1 may be incorrect,
                             * if a[great] and pivot1 are floating-point zeros
                             * of different signs. Therefore in float and
                             * double sorting methods we have to use more
                             * accurate assignment a[less] = a[great].
                             */
                            //在这里,int排序如下
                            /*if (a[great] == pivot1) { // a[great] < pivot2
                                  a[k] = a[less];
                                /*
                                 * Even though a[great] equals to pivot1, the
                                 * assignment a[less] = pivot1 may be incorrect,
                                 * if a[great] and pivot1 are floating-point zeros
                                 * of different signs. Therefore in float and
                                 * double sorting methods we have to use more
                                 * accurate assignment a[less] = a[great].
                                 */
                                a[less] = pivot1;
                                ++less;
                               } else { // pivot1 < a[great] < pivot2
                                a[k] = a[great];
                               }
                            */
                            //作者的注释已经很明显了,在浮点数情况下a[less]=pivot1可能并不完            
                            //全正确
                            a[less] = a[great];
                            ++less;
                        } else { // pivot1 < a[great] < pivot2
                            a[k] = a[great];
                        }
                        a[great] = ak;
                        --great;
                    }
                }
            }

            // Sort center part recursively
            sort(a, less, great, false);

        } else { // Partitioning with one pivot
            /*
             * Use the third of the five sorted elements as pivot.
             * This value is inexpensive approximation of the median.
             */
            float pivot = a[e3];

            /*
             * Partitioning degenerates to the traditional 3-way
             * (or "Dutch National Flag") schema:
             *
             *   left part    center part              right part
             * +-------------------------------------------------+
             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
             * +-------------------------------------------------+
             *              ^              ^        ^
             *              |              |        |
             *             less            k      great
             *
             * Invariants:
             *
             *   all in (left, less)   < pivot
             *   all in [less, k)     == pivot
             *   all in (great, right) > pivot
             *
             * Pointer k is the first index of ?-part.
             */
            for (int k = less; k <= great; ++k) {
                if (a[k] == pivot) {
                    continue;
                }
                float ak = a[k];
                if (ak < pivot) { // Move a[k] to left part
                    a[k] = a[less];
                    a[less] = ak;
                    ++less;
                } else { // a[k] > pivot - Move a[k] to right part
                    while (a[great] > pivot) {
                        --great;
                    }
                    if (a[great] < pivot) { // a[great] <= pivot
                        a[k] = a[less];
                        a[less] = a[great];
                        ++less;
                    } else { // a[great] == pivot
                        /*
                         * Even though a[great] equals to pivot, the
                         * assignment a[k] = pivot may be incorrect,
                         * if a[great] and pivot are floating-point
                         * zeros of different signs. Therefore in float
                         * and double sorting methods we have to use
                         * more accurate assignment a[k] = a[great].
                         */
                        a[k] = a[great];
                    }
                    a[great] = ak;
                    --great;
                }
            }

            /*
             * Sort left and right parts recursively.
             * All elements from center part are equal
             * and, therefore, already sorted.
             */
            sort(a, left, less - 1, leftmost);
            sort(a, great + 1, right, false);
        }
    }

double sort和float sort基本没有区别

 

 

 

 

 

 

 

 

你可能感兴趣的:(源码解析)