基于keras实现CNN对cifar10进行分类

import keras
from keras.datasets import cifar10
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D

num_classes = 10
model_name = 'cifar10.h5'

# The data, shuffled and split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.load_data()

print(x_train.shape)
x_train = x_train.astype('float32')/255
x_test = x_test.astype('float32')/255

# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()

model.add(Conv2D(32, (3, 3), padding='same', input_shape=x_train.shape[1:]))
model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))

model.add(Dense(num_classes))
model.add(Activation('softmax'))

model.summary()

# initiate RMSprop optimizer
opt = keras.optimizers.rmsprop(lr=0.001, decay=1e-6)

# train the model using RMSprop
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

hist = model.fit(x_train, y_train, epochs=40, batch_size=50000, shuffle=True, validation_data=(x_test, y_test))
model.save(model_name)

# evaluate
loss, accuracy = model.evaluate(x_test, y_test)
print('loss: %f, accurcy: %f' % (loss, accuracy))

你可能感兴趣的:(算法学习)