- 易 AI - 使用 TensorFlow 2 Keras 实现 AlexNet CNN 架构
CatchZeng
原文:https://makeoptim.com/deep-learning/yiai-alexnet-implementation前言网络结构实现SequentialSubclassingDemo小结参考前言上一篇笔者使用如何阅读深度学习论文的方法阅读了AlexNet。为了加深理解,本文带大家使用TensorFlow2Keras实现AlexNetCNN架构。网络结构image从上一篇可以得到Al
- 论文学习记录之Deep-learning seismic full-waveform inversion for realistic structuralmodels
摘星星的屋顶
论文深度学习人工智能
一、ABSTRACT—摘要标题:Deep-learningseismicfull-waveforminversionforrealisticstructuralmodels(用于真实结构模型的深度学习地震全波形反演)作者:BinLiu1,SenlinYang2,YuxiaoRen2,XinjiXu3,PengJiang2,andYangkangChen4(和SeisInvNet有共同作者,应该是同
- 论文学习记录之SeisInvNet(Deep-Learning Inversion of Seismic Data)
摘星星的屋顶
论文人工智能
目录1INTRODUCTION—介绍2RELATEDWORKS—相关作品3METHODOLOGYANDIMPLEMENTATION—方法和执行3.1方法3.2执行4EXPERIMENTS—实验4.1数据集准备4.2实验设置4.3基线模型4.4定向比较4.5定量比较4.6机理研究5CONCLUSION—结论1INTRODUCTION—介绍地震勘探是根据地震波在大地中的传播规律来确定地下地层结构的一种
- 易 AI - 机器学习计算机视觉基础
CatchZeng
原文:http://makeoptim.com/deep-learning/yiai-cv计算机视觉表达黑白图灰度图彩色图操作卷积均值滤波归一化统一量纲加速模型训练梯度下降GPU浮点运算小结参考链接上一篇讲解了机器学习数据集的概念以及如何收集图片数据集。收集到的数据是被训练的对象,那么怎么表示这些数据呢?数据又需要被怎么操作呢?本文为大家讲解计算机视觉基础,帮助大家在后面的课程中更好地理解和训练模
- 【Pytorch】Transposed Convolution
bryant_meng
pytorch人工智能python反卷积逆卷积
文章目录1卷积2反/逆卷积3MaxUnpool/ConvTranspose4encoder-decoder5可视化学习参考来自:详解逆卷积操作–Up-samplingwithTransposedConvolutionPyTorch使用记录https://github.com/naokishibuya/deep-learning/blob/master/python/transposed_convo
- 2-EagleC: A deep-learning framework for detecting a full range of structural variations from bulk...
怎么不是呐
Hi-C技术:检测人类基因组结构变异(SVs)的一种有前景的方法。目前严重缺乏能够使用Hi-C数据进行全范围SV检测的算法,只能以低于最佳的分辨率识别染色体间易位和远程染色体内SVs(>1mb)。本文开发了一个深度学习模型,结合了深度学习和集成学习策略的框架,以高分辨率预测全范围的SVs——EagleC在癌症基因组中认识了许多先前未知的融合事件,也发掘了已知致癌基因的新型调控机制,这些发现为癌症分
- 用数据玩点花样!如何构建skim-gram模型来训练和可视化词向量
机器之心V
php人工智能
本文介绍了如何在TensorFlow中实现skim-gram模型,并用TensorBoard进行可视化。GitHub地址:https://github.com/priya-dwivedi/Deep-Learning/blob/master/word2vec_skipgram/Skip-Grams-Solution.ipynb本教程将展示如何在TensorFlow中实现skim-gram模型,以便为
- Deep-learning
斗战胜佛oh
图卷积网络在药物研发中的应用综述尽管深度学习在很多领域在过去的几年取得了一定的成功,但是在分子信息和药物发现领域成功的应用依然有限。适用于深层架构的结构化数据方面的最新进展为药物研究开辟了新的范例。该篇从四个角度阐述了图神经网络在药物发现和分子信息领域的应用。1)分子属性和活性预测;2)相互作用预测;3)合成预测;4)从头药物设计。最后总结了药物相关问题的代表性应用。讨论将图卷积网络应用于药物发现
- 用BERT进行机器阅读理解
javastart
自然语言
这里可以找到带有代码的Github存储库:https://github.com/edwardcqian/bert_QA。本文将讨论如何设置此项功能.机器(阅读)理解是NLP的领域,我们使用非结构化文本教机器理解和回答问题。https://www.coursera.org/specializations/deep-learning?ranMID=40328&ranEAID=J2RDoRlzkk&ra
- 停车场车位检测思路梳理
杂七杂八的
输入列表图像,在工具台中输出图像defshow_images(self,images,cmap=None):输入的是某一张图片和给图片的name,make_write表示是否需要yyyyafafaffadfsfgf10.fhttps://github.com/priya-dwivedi/Deep-Learning/tree/master/parking_spots_detector/train_d
- AI - Ubuntu 机器学习环境 (TensorFlow GPU, JupyterLab, VSCode)
CatchZeng
原文:https://makeoptim.com/deep-learning/tensorflow-gpu-on-ubuntu介绍所需软件安装前GCCNVIDIApackagerepositoriesNVIDIAmachinelearningNVIDIAGPUdriverCUDAToolKitandcuDNNTensorRTMiniconda虚拟环境安装TensorFlow安装JupyterLab
- deep-learning(1) - 随手记录的知识点
Laniakea_01d0
业界通常认为第一层是隐藏层的第一层AI会遇上工程类问题Padding补零操作,可以保证卷积核在每块区域都进行卷积,迭代次数越多,更有效果,提取特征更好生成器和迭代器,存在的意义,一般我们需要对一个数组进行操作的时候,我们要遍历出来操作,比如一亿个参数,我们不可能一次性全部取出来,一个一个的去取,这就是生成器存在的意义。Dataloader加载数据到内存Next(iter(a))转换成0,1转换成正
- 易 AI - AlexNet 论文深度讲解
CatchZeng
原文:https://makeoptim.com/deep-learning/yiai-paper-alexnet论文地址阅读方式ImageNetClassificationwithDeepConvolutionalNeuralNetworks使用深度卷积神经网络的ImageNet分类Abstract摘要1Introduction1简介2TheDataset2数据集3TheArchitecture
- AI - Mac M1 机器学习环境 (TensorFlow, JupyterLab, VSCode)
CatchZeng
原文https://makeoptim.com/deep-learning/mac-m1-tensorflowXcodeCommandLineToolsHomebrewMiniforge下载AppleTensorFlow创建虚拟环境安装必须的包安装特殊版本的pip和其他包安装Apple提供的包(numpy,grpcio,h5py)安装额外的包安装TensorFlow测试JupyterLabVSCo
- 易 AI - 机器学习卷积神经网络(CNN)
CatchZeng
原文:http://makeoptim.com/deep-learning/yiai-cnn卷积神经网络结构输入层隐藏层输出层TensorFlow中定义卷积神经网络模型宏观理解卷积神经网络全连接采样卷积小结上一篇介绍了如何在TensorFlow中加载数据集。从本文开始将以王者荣耀为例,介绍卷积神经网络(CNN)。由于涉及的内容较多,本文主要先介绍以下内容:卷积神经网络结构TensorFlow中定义
- 易 AI - 使用 TensorFlow Object Detection API 训练自定义目标检测模型
CatchZeng
原文:https://makeoptim.com/deep-learning/yiai-object-detection前言目标检测位置发展史传统方法(候选区域+手工特征提取+分类器)RegionProposal+CNN(Two-stage)端到端(One-stage)TensorFlowObjectDetectionAPI安装依赖项安装API工程创建数据集图片标注创建TFRecord模型训练下载
- AI - Mac 机器学习环境 (TensorFlow, JupyterLab, VSCode)
CatchZeng
原文:https://makeoptim.com/deep-learning/mac-tensorflowCondaAnacondaMiniconda创建虚拟环境安装tensorflow检查安装JupyterLab启动安装其他依赖JupyterLab运行tensorflow安装VSCodeVSCode运行tensorflow小结延伸阅读在MacM1机器学习环境讲述了如何在M1芯片的Mac搭建机器学
- NLP(新闻文本分类)——数据读取与数据分析
浩波的笔记
NLP机器学习pythonnlp
初始数据importpandasaspddf_train=pd.read_csv('E:/python-project/deep-learning/datawhale/nlp/news-data/train_set.csv/train_set.csv',sep='\t')df_test=pd.read_csv('E:/python-project/deep-learning/datawhale/n
- AI - Apple Silicon Mac M1 原生支持 TensorFlow 2.6 GPU 加速(tensorflow-metal PluggableDevice)
CatchZeng
原文:http://makeoptim.com/deep-learning/tensorflow-metal前言系统要求当前不支持XcodeCommandLineToolsHomebrewMiniforge创建虚拟环境安装Tensorflowdependencies首次安装升级安装安装Tensorflow安装metalplugin安装必须的包测试JupyterLabVSCode延伸阅读参考前言几天
- 易 AI - ResNet 论文深度讲解
CatchZeng
原文:https://makeoptim.com/deep-learning/yiai-paper-resnet论文地址阅读方式DeepResidualLearningforImageRecognition图像识别的深度残差学习Abstract摘要1Introduction1简介2RelatedWork2相关工作3.DeepResidualLearning3.深度残差学习3.1.ResidualL
- Windows安装PyTorch-CPU
Ann剑
安装PyTorchpytorchwindowspython
看了好多大佬的教程,终于给自己老旧电脑成功安装了PyTorch本电脑安装的软件PyTorch=1.12.1anaconda版本为conda4.8.2(anaconda自行安装)开始前以管理员方式运行anacondaprompt一、安装PyTorch一、安装PyTorch(1)创建环境为deep-learning,也可以为PyTorch(就是一个名字)。指定Python版本condacreate-n
- transformer(Bert)的多头注意力对每一个head进行降维的分析
想赚钱的雷大
背景:在用keras的multiattention模块做实验的时候,发现学习参数随着头数的增多而增多,与transformer中的实现不太一致结果:本着想了解透彻的思路去网上搜索了一番,第一篇我就觉得整理的不错,附上链接:http://www.sniper97.cn/index.php/note/deep-learning/note-deep-learning/4002/总结一下:一言蔽之的话,大
- nvidia 3060 + cuda + cudnn + tf
代码&诗
tensorflowpython深度学习
参考:https://eipi10.cn/deep-learning/2019/11/28/centos_cuda_cudnn/1.环境版本:CentOSLinuxrelease7.8.2003(Core)Tensorflow-gpu2.5nvidia3060cuda11.2.2cudnn-11.32.环境检查:lscpi|grep-invidia#要有nvidia设备3.首先安装nvidia-3
- identifier “THCudaCheck“ is undefined 的解决方法
莫说相公痴
MachineLearningPythonPytorch深度学习pytorch人工智能
THCudaCheck在pytorch1.11.0版本被移除了,可以看文档https://www.exxactcorp.com/blog/Deep-Learning/pytorch-1-11-0-now-available解决方法是将THCudaCheck替换成C10_CUDA_CHECK
- 交通事故预测—《Traffic Accident’s Severity Prediction: A Deep-Learning Approach-Based CNN Network》
永恒的记忆2019
科研论文python机器学习人工智能
一、文章信息《TrafficAccident’sSeverityPrediction:ADeep-LearningApproach-BasedCNNNetwork》,2019年Access上的一篇文章。二、摘要基于交通事故特征的权重,提出了基于特征矩阵的灰色图像(FM2GI)算法,将交通事故数据的单一特征关系转换为包含并行组合关系的灰色图像作为模型的输入变量,网络模型是基于CNN。(也就是说这篇文
- 通过 MQTT 检测对象和传输图像
woshicver
pythonopencvvnccvopengl
在本文中,我们将学习如何使用open-cv和YOLO对象检测器每五秒捕获/保存和检测图像中的对象。然后我们将图像转换为字节数组并通过MQTT发布,这将在另一个远程设备上接收并保存为JPG。我们将使用YoloV3算法和一个免费的MQTT代理YoloV3算法:https://viso.ai/deep-learning/yolov3-overview/#:~:text=What's%20Next%3F-
- DNN(Deep-Learning Neural Network)
sherlock31415931
ML神经网络深度学习人工智能tensorflownumpy
DNN(Deep-LearningNeuralNetwork)接下来介绍比较常见的全连接层网络(fully-connectedfeedfowardneruralnetwork)名词解释首先介绍一下神经网络的基本架构,以一个神经元为例输入是一个向量,权重(weights)也是一个矩阵把两个矩阵进行相乘,最后加上偏差(bias),即w1*x1+w2*x2+b神经元里面会有一个激活函数(activati
- AlexNet详解
tt丫
深度学习人工智能深度学习神经网络AlexNet
入门小菜鸟,希望像做笔记记录自己学的东西,也希望能帮助到同样入门的人,更希望大佬们帮忙纠错啦~侵权立删。✨完整代码在我的github上,有需要的朋友可以康康✨GitHub-tt-s-t/Deep-Learning:Storesomeofyourownin-depthlearningcode,whichiscurrentlyintheupdatestage.Thecontentcovers:each
- 论文解读:ProteinBERT: a universal deep-learning model of protein sequence and function
wangpan007
生信论文神经网络python编程深度学习神经网络python
目录1.研究背景2.研究数据2.1预训练的蛋白质数据集2.2蛋白质基准数据集3.研究方法3.1序列和标注编码3.2蛋白质序列和注释的自我监督预训练3.3对蛋白质基准进行监督微调3.4深度学习框架4.结果4.1预训练可以改善蛋白质模型4.2ProteinBERT在不同的蛋白质基准上达到了近乎最先进的结果4.4全局注意力机制的理解5.结论作者单位:耶路撒冷希伯来大学发表期刊:《Bioinformati
- 【U-Net2015】U-Net: Convolutional Networks for Biomedical Image Segmentation mage Segmentation
不会声调的博er
深度学习caffe计算机视觉
U-Net:ConvolutionalNetworksforBiomedicalmageSegmentation生物医学图像语义分割的卷积神经网络arXiv:1505.04597v1[cs.CV]18May2015文章地址:https://arxiv.org/abs/1505.04597代码地址:https://github.com/Jack-Cherish/Deep-Learning/tree/
- github中多个平台共存
jackyrong
github
在个人电脑上,如何分别链接比如oschina,github等库呢,一般教程之列的,默认
ssh链接一个托管的而已,下面讲解如何放两个文件
1) 设置用户名和邮件地址
$ git config --global user.name "xx"
$ git config --global user.email "
[email protected]"
- ip地址与整数的相互转换(javascript)
alxw4616
JavaScript
//IP转成整型
function ip2int(ip){
var num = 0;
ip = ip.split(".");
num = Number(ip[0]) * 256 * 256 * 256 + Number(ip[1]) * 256 * 256 + Number(ip[2]) * 256 + Number(ip[3]);
n
- 读书笔记-jquey+数据库+css
chengxuyuancsdn
htmljqueryoracle
1、grouping ,group by rollup, GROUP BY GROUPING SETS区别
2、$("#totalTable tbody>tr td:nth-child(" + i + ")").css({"width":tdWidth, "margin":"0px", &q
- javaSE javaEE javaME == API下载
Array_06
java
oracle下载各种API文档:
http://www.oracle.com/technetwork/java/embedded/javame/embed-me/documentation/javame-embedded-apis-2181154.html
JavaSE文档:
http://docs.oracle.com/javase/8/docs/api/
JavaEE文档:
ht
- shiro入门学习
cugfy
javaWeb框架
声明本文只适合初学者,本人也是刚接触而已,经过一段时间的研究小有收获,特来分享下希望和大家互相交流学习。
首先配置我们的web.xml代码如下,固定格式,记死就成
<filter>
<filter-name>shiroFilter</filter-name>
&nbs
- Array添加删除方法
357029540
js
刚才做项目前台删除数组的固定下标值时,删除得不是很完整,所以在网上查了下,发现一个不错的方法,也提供给需要的同学。
//给数组添加删除
Array.prototype.del = function(n){
- navigation bar 更改颜色
张亚雄
IO
今天郁闷了一下午,就因为objective-c默认语言是英文,我写的中文全是一些乱七八糟的样子,到不是乱码,但是,前两个自字是粗体,后两个字正常体,这可郁闷死我了,问了问大牛,人家告诉我说更改一下字体就好啦,比如改成黑体,哇塞,茅塞顿开。
翻书看,发现,书上有介绍怎么更改表格中文字字体的,代码如下
 
- unicode转换成中文
adminjun
unicode编码转换
在Java程序中总会出现\u6b22\u8fce\u63d0\u4ea4\u5fae\u535a\u641c\u7d22\u4f7f\u7528\u53cd\u9988\uff0c\u8bf7\u76f4\u63a5这个的字符,这是unicode编码,使用时有时候不会自动转换成中文就需要自己转换了使用下面的方法转换一下即可。
/**
* unicode 转换成 中文
- 一站式 Java Web 框架 firefly
aijuans
Java Web
Firefly是一个高性能一站式Web框架。 涵盖了web开发的主要技术栈。 包含Template engine、IOC、MVC framework、HTTP Server、Common tools、Log、Json parser等模块。
firefly-2.0_07修复了模版压缩对javascript单行注释的影响,并新增了自定义错误页面功能。
更新日志:
增加自定义系统错误页面功能
- 设计模式——单例模式
ayaoxinchao
设计模式
定义
Java中单例模式定义:“一个类有且仅有一个实例,并且自行实例化向整个系统提供。”
分析
从定义中可以看出单例的要点有三个:一是某个类只能有一个实例;二是必须自行创建这个实例;三是必须自行向系统提供这个实例。
&nb
- Javascript 多浏览器兼容性问题及解决方案
BigBird2012
JavaScript
不论是网站应用还是学习js,大家很注重ie与firefox等浏览器的兼容性问题,毕竟这两中浏览器是占了绝大多数。
一、document.formName.item(”itemName”) 问题
问题说明:IE下,可以使用 document.formName.item(”itemName”) 或 document.formName.elements ["elementName&quo
- JUnit-4.11使用报java.lang.NoClassDefFoundError: org/hamcrest/SelfDescribing错误
bijian1013
junit4.11单元测试
下载了最新的JUnit版本,是4.11,结果尝试使用发现总是报java.lang.NoClassDefFoundError: org/hamcrest/SelfDescribing这样的错误,上网查了一下,一般的解决方案是,换一个低一点的版本就好了。还有人说,是缺少hamcrest的包。去官网看了一下,如下发现:
- [Zookeeper学习笔记之二]Zookeeper部署脚本
bit1129
zookeeper
Zookeeper伪分布式安装脚本(此脚本在一台机器上创建Zookeeper三个进程,即创建具有三个节点的Zookeeper集群。这个脚本和zookeeper的tar包放在同一个目录下,脚本中指定的名字是zookeeper的3.4.6版本,需要根据实际情况修改):
#!/bin/bash
#!!!Change the name!!!
#The zookeepe
- 【Spark八十】Spark RDD API二
bit1129
spark
coGroup
package spark.examples.rddapi
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.SparkContext._
object CoGroupTest_05 {
def main(args: Array[String]) {
v
- Linux中编译apache服务器modules文件夹缺少模块(.so)的问题
ronin47
modules
在modules目录中只有httpd.exp,那些so文件呢?
我尝试在fedora core 3中安装apache 2. 当我解压了apache 2.0.54后使用configure工具并且加入了 --enable-so 或者 --enable-modules=so (两个我都试过了)
去make并且make install了。我希望在/apache2/modules/目录里有各种模块,
- Java基础-克隆
BrokenDreams
java基础
Java中怎么拷贝一个对象呢?可以通过调用这个对象类型的构造器构造一个新对象,然后将要拷贝对象的属性设置到新对象里面。Java中也有另一种不通过构造器来拷贝对象的方式,这种方式称为
克隆。
Java提供了java.lang.
- 读《研磨设计模式》-代码笔记-适配器模式-Adapter
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 适配器模式解决的主要问题是,现有的方法接口与客户要求的方法接口不一致
* 可以这样想,我们要写这样一个类(Adapter):
* 1.这个类要符合客户的要求 ---> 那显然要
- HDR图像PS教程集锦&心得
cherishLC
PS
HDR是指高动态范围的图像,主要原理为提高图像的局部对比度。
软件有photomatix和nik hdr efex。
一、教程
叶明在知乎上的回答:
http://www.zhihu.com/question/27418267/answer/37317792
大意是修完后直方图最好是等值直方图,方法是HDR软件调一遍,再结合不透明度和蒙版细调。
二、心得
1、去除阴影部分的
- maven-3.3.3 mvn archetype 列表
crabdave
ArcheType
maven-3.3.3 mvn archetype 列表
可以参考最新的:http://repo1.maven.org/maven2/archetype-catalog.xml
[INFO] Scanning for projects...
[INFO]
- linux shell 中文件编码查看及转换方法
daizj
shell中文乱码vim文件编码
一、查看文件编码。
在打开文件的时候输入:set fileencoding
即可显示文件编码格式。
二、文件编码转换
1、在Vim中直接进行转换文件编码,比如将一个文件转换成utf-8格式
&
- MySQL--binlog日志恢复数据
dcj3sjt126com
binlog
恢复数据的重要命令如下 mysql> flush logs; 默认的日志是mysql-bin.000001,现在刷新了重新开启一个就多了一个mysql-bin.000002
- 数据库中数据表数据迁移方法
dcj3sjt126com
sql
刚开始想想好像挺麻烦的,后来找到一种方法了,就SQL中的 INSERT 语句,不过内容是现从另外的表中查出来的,其实就是 MySQL中INSERT INTO SELECT的使用
下面看看如何使用
语法:MySQL中INSERT INTO SELECT的使用
1. 语法介绍
有三张表a、b、c,现在需要从表b
- Java反转字符串
dyy_gusi
java反转字符串
前几天看见一篇文章,说使用Java能用几种方式反转一个字符串。首先要明白什么叫反转字符串,就是将一个字符串到过来啦,比如"倒过来念的是小狗"反转过来就是”狗小是的念来过倒“。接下来就把自己能想到的所有方式记录下来了。
1、第一个念头就是直接使用String类的反转方法,对不起,这样是不行的,因为Stri
- UI设计中我们为什么需要设计动效
gcq511120594
UIlinux
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用
- JBOSS服务部署端口冲突问题
HogwartsRow
java应用服务器jbossserverEJB3
服务端口冲突问题的解决方法,一般修改如下三个文件中的部分端口就可以了。
1、jboss5/server/default/conf/bindingservice.beans/META-INF/bindings-jboss-beans.xml
2、./server/default/deploy/jbossweb.sar/server.xml
3、.
- 第三章 Redis/SSDB+Twemproxy安装与使用
jinnianshilongnian
ssdbreidstwemproxy
目前对于互联网公司不使用Redis的很少,Redis不仅仅可以作为key-value缓存,而且提供了丰富的数据结果如set、list、map等,可以实现很多复杂的功能;但是Redis本身主要用作内存缓存,不适合做持久化存储,因此目前有如SSDB、ARDB等,还有如京东的JIMDB,它们都支持Redis协议,可以支持Redis客户端直接访问;而这些持久化存储大多数使用了如LevelDB、RocksD
- ZooKeeper原理及使用
liyonghui160com
ZooKeeper是Hadoop Ecosystem中非常重要的组件,它的主要功能是为分布式系统提供一致性协调(Coordination)服务,与之对应的Google的类似服务叫Chubby。今天这篇文章分为三个部分来介绍ZooKeeper,第一部分介绍ZooKeeper的基本原理,第二部分介绍ZooKeeper
- 程序员解决问题的60个策略
pda158
框架工作单元测试
根本的指导方针
1. 首先写代码的时候最好不要有缺陷。最好的修复方法就是让 bug 胎死腹中。
良好的单元测试
强制数据库约束
使用输入验证框架
避免未实现的“else”条件
在应用到主程序之前知道如何在孤立的情况下使用
日志
2. print 语句。往往额外输出个一两行将有助于隔离问题。
3. 切换至详细的日志记录。详细的日
- Create the Google Play Account
sillycat
Google
Create the Google Play Account
Having a Google account, pay 25$, then you get your google developer account.
References:
http://developer.android.com/distribute/googleplay/start.html
https://p
- JSP三大指令
vikingwei
jsp
JSP三大指令
一个jsp页面中,可以有0~N个指令的定义!
1. page --> 最复杂:<%@page language="java" info="xxx"...%>
* pageEncoding和contentType:
> pageEncoding:它