#define CV_HAAR_FEATURE_MAX 3
typedef struct CvHaarFeature
{
int tilted;
struct
{
CvRect r;
float weight;
} rect[CV_HAAR_FEATURE_MAX];
}
CvHaarFeature;
typedef struct CvHaarClassifier
{
int count;
CvHaarFeature* haar_feature;
float* threshold;
int* left;
int* right;
float* alpha;
}
CvHaarClassifier;
typedef struct CvHaarStageClassifier
{
int count; /* number of classifiers in the battery */
float threshold; /* threshold for the boosted classifier */
CvHaarClassifier* classifier; /* array of classifiers */
/* these fields are used for organizing trees of stage classifiers,
rather than just stright cascades */
int next;
int child;
int parent;
}
CvHaarStageClassifier;
CvHaarClassifierCascade
typedef struct CvHidHaarClassifierCascade CvHidHaarClassifierCascade;
typedef struct CvHaarClassifierCascade
{
int flags;
int count;
CvSize orig_window_size;
CvSize real_window_size;
double scale;
CvHaarStageClassifier* stage_classifier;
CvHidHaarClassifierCascade* hid_cascade;
}
CvHaarClassifierCascade;
typedef struct CvAvgComp
{
CvRect rect; /* bounding rectangle for the object (average rectangle of a group) */
int neighbors; /* number of neighbor rectangles in the group */
}
CvAvgComp;
使用针对某目标物体训练的级联分类器在图像中找到包含目标物体的矩形区域,并且将这些区域作为一序列的矩形框返。
code:
#include "cv.h"
#include "highgui.h"
//读取训练好的分类器。
CvHaarClassifierCascade* load_object_detector( const char* cascade_path )
{
return (CvHaarClassifierCascade*)cvLoad( cascade_path );
}
void detect_and_draw_objects( IplImage* image,
CvHaarClassifierCascade* cascade,
int do_pyramids )
{
IplImage* small_image = image;
CvMemStorage* storage = cvCreateMemStorage(0); //创建动态内存
CvSeq* faces;
int i, scale = 1;
/* if the flag is specified, down-scale the 输入图像 to get a
performance boost w/o loosing quality (perhaps) */
if( do_pyramids )
{
small_image = cvCreateImage( cvSize(image->width/2,image->height/2), IPL_DEPTH_8U, 3 );
cvPyrDown( image, small_image, CV_GAUSSIAN_5x5 );//函数 cvPyrDown 使用 Gaussian 金字塔分解对输入图像向下采样。首先它对输入图像用指定滤波器进行卷积,然后通过拒绝偶数的行与列来下采样图像。
scale = 2;
}
/* use the fastest variant */
faces = cvHaarDetectObjects( small_image, cascade, storage, 1.2, 2, CV_HAAR_DO_CANNY_PRUNING );
/* draw all the rectangles */
for( i = 0; i < faces->total; i++ )
{
/* extract the rectanlges only */
CvRect face_rect = *(CvRect*)cvGetSeqElem( faces, i, 0 );
cvRectangle( image, cvPoint(face_rect.x*scale,face_rect.y*scale),
cvPoint((face_rect.x+face_rect.width)*scale,
(face_rect.y+face_rect.height)*scale),
CV_RGB(255,0,0), 3 );
}
if( small_image != image )
cvReleaseImage( &small_image );
cvReleaseMemStorage( &storage ); //释放动态内存
}
/* takes image filename and cascade path from the command line */
int main( int argc, char** argv )
{
IplImage* image;
if( argc==3 && (image = cvLoadImage( argv[1], 1 )) != 0 )
{
CvHaarClassifierCascade* cascade = load_object_detector(argv[2]);
detect_and_draw_objects( image, cascade, 1 );
cvNamedWindow( "test", 0 );
cvShowImage( "test", image );
cvWaitKey(0);
cvReleaseHaarClassifierCascade( &cascade );
cvReleaseImage( &image );
}
return 0;
}
========================================================================================================
以下来自: http://blog.sina.com.cn/s/blog_790bb7190100qm66.html
OpenCV的人脸检测主要是调用训练好的cascade(Haar分类器)来进行模式匹配。
cvHaarDetectObjects,先将图像灰度化,根据传入参数判断是否进行canny边缘处理(默认不使用),再进行匹配。匹配后收集找出的匹配块,过滤噪声,计算相邻个数如果超过了规定值(传入的min_neighbors)就当成输出结果,否则删去。
匹配循环:将匹配分类器放大scale(传入值)倍,同时原图缩小scale倍,进行匹配,直到匹配分类器的大小大于原图,则返回匹配结果。匹配的时候调用cvRunHaarClassifierCascade来进行匹配,将所有结果存入CvSeq* Seq (可动态增长元素序列),将结果传给cvHaarDetectObjects。
cvRunHaarClassifierCascade函数整体是根据传入的图像和cascade来进行匹配。并且可以根据传入的cascade类型不同(树型、stump(不完整的树)或其他的),进行不同的匹配方式。
函数 cvRunHaarClassifierCascade 用于对单幅图片的检测。在函数调用前首先利用 cvSetImagesForHaarClassifierCascade设定积分图和合适的比例系数 (=> 窗口尺寸)。当分析的矩形框全部通过级联分类器每一层的时返回正值(这是一个候选目标),否则返回0或负值。
为了了解OpenCV人脸检测中寻找匹配图像的详细过程,就把cvHaarDetectObjects和cvRunHaarClassifierCascade的源文件详细看了一遍,并打上了注释。方便大家阅读。
附cvHaarDetectObjects代码:
CV_IMPL CvSeq*
cvHaarDetectObjects( const CvArr* _img,
CvHaarClassifierCascade* cascade,
CvMemStorage* storage, double scale_factor,
int min_neighbors, int flags, CvSize min_size )
{
int split_stage = 2;
CvMat stub, *img = (CvMat*)_img; //CvMat多通道矩阵 *img=_img指针代换传入图
CvMat *temp = 0, *sum = 0, *tilted = 0, *sqsum = 0, *norm_img = 0, *sumcanny = 0, *img_small = 0;
CvSeq* seq = 0;
CvSeq* seq2 = 0; //CvSeq可动态增长元素序列
CvSeq* idx_seq = 0;
CvSeq* result_seq = 0;
CvMemStorage* temp_storage = 0;
CvAvgComp* comps = 0;
int i;
#ifdef _OPENMP
CvSeq* seq_thread[CV_MAX_THREADS] = {0};
int max_threads = 0;
#endif
CV_FUNCNAME( “cvHaarDetectObjects” );
__BEGIN__;
double factor;
int npass = 2, coi; //npass=2
int do_canny_pruning = flags & CV_HAAR_DO_CANNY_PRUNING; //true做canny边缘处理
if( !CV_IS_HAAR_CLASSIFIER(cascade) )
CV_ERROR( !cascade ? CV_StsNullPtr : CV_StsBadArg, “Invalid classifier cascade” );
if( !storage )
CV_ERROR( CV_StsNullPtr, “Null storage pointer” );
CV_CALL( img = cvGetMat( img, &stub, &coi ));
if( coi )
CV_ERROR( CV_BadCOI, “COI is not supported” ); //一些出错代码
if( CV_MAT_DEPTH(img->type) != CV_8U )
CV_ERROR( CV_StsUnsupportedFormat, “Only 8-bit images are supported” );
CV_CALL( temp = cvCreateMat( img->rows, img->cols, CV_8UC1 ));
CV_CALL( sum = cvCreateMat( img->rows + 1, img->cols + 1, CV_32SC1 ));
CV_CALL( sqsum = cvCreateMat( img->rows + 1, img->cols + 1, CV_64FC1 ));
CV_CALL( temp_storage = cvCreateChildMemStorage( storage ));
#ifdef _OPENMP
max_threads = cvGetNumThreads();
for( i = 0; i < max_threads; i++ )
{
CvMemStorage* temp_storage_thread;
CV_CALL( temp_storage_thread = cvCreateMemStorage(0)); //CV_CALL就是运行,假如出错就报错。
CV_CALL( seq_thread[i] = cvCreateSeq( 0, sizeof(CvSeq), //CvSeq可动态增长元素序列
sizeof(CvRect), temp_storage_thread ));
}
#endif
if( !cascade->hid_cascade )
CV_CALL( icvCreateHidHaarClassifierCascade(cascade) );
if( cascade->hid_cascade->has_tilted_features )
tilted = cvCreateMat( img->rows + 1, img->cols + 1, CV_32SC1 ); //多通道矩阵 图像长宽+1 4通道
seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvRect), temp_storage ); //创建序列seq 矩形
seq2 = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), temp_storage ); //创建序列seq2 矩形和邻近
result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), storage ); //创建序列result_seq 矩形和邻近
if( min_neighbors == 0 )
seq = result_seq;
if( CV_MAT_CN(img->type) > 1 )
{
cvCvtColor( img, temp, CV_BGR2GRAY ); //img转为灰度
img = temp;
}
if( flags & CV_HAAR_SCALE_IMAGE ) //flag && 匹配图
{
CvSize win_size0 = cascade->orig_window_size; //CvSize win_size0为分类器的原始大小
int use_ipp = cascade->hid_cascade->ipp_stages != 0 &&
icvApplyHaarClassifier_32s32f_C1R_p != 0; //IPP相关函数
if( use_ipp )
CV_CALL( norm_img = cvCreateMat( img->rows, img->cols, CV_32FC1 )); //图像的矩阵化 4通道.
CV_CALL( img_small = cvCreateMat( img->rows + 1, img->cols + 1, CV_8UC1 )); //小图矩阵化 单通道 长宽+1
for( factor = 1; ; factor *= scale_factor ) //成scale_factor倍数匹配
{
int positive = 0;
int x, y;
CvSize win_size = { cvRound(win_size0.width*factor),
cvRound(win_size0.height*factor) }; //winsize 分类器行列(扩大factor倍)
CvSize sz = { cvRound( img->cols/factor ), cvRound( img->rows/factor ) }; //sz 图像行列(缩小factor倍) 三个Cvsize
CvSize sz1 = { sz.width – win_size0.width, sz.height – win_size0.height }; //sz1 图像 减分类器行列
CvRect rect1 = { icv_object_win_border, icv_object_win_border,
win_size0.width – icv_object_win_border*2, //icv_object_win_border (int) 初始值=1
win_size0.height – icv_object_win_border*2 }; //矩形框rect1
CvMat img1, sum1, sqsum1, norm1, tilted1, mask1; //多通道矩阵
CvMat* _tilted = 0;
if( sz1.width <= 0 || sz1.height <= 0 ) //图片宽或高小于分类器–>跳出
break;
if( win_size.width < min_size.width || win_size.height < min_size.height ) //分类器高或宽小于给定的mini_size的高或宽–>继续
continue;
//CV_8UC1见定义.
//#define CV_MAKETYPE(depth,cn) ((depth) + (((cn)-1) << CV_CN_SHIFT))
//深度+(cn-1)左移3位 depth,depth+8,depth+16,depth+24.
img1 = cvMat( sz.height, sz.width, CV_8UC1, img_small->data.ptr ); //小图的矩阵化 img1 单通道
sum1 = cvMat( sz.height+1, sz.width+1, CV_32SC1, sum->data.ptr ); //长宽+1 4通道8位 多通道矩阵
sqsum1 = cvMat( sz.height+1, sz.width+1, CV_64FC1, sqsum->data.ptr ); //长宽+1 4通道16位
if( tilted )
{
tilted1 = cvMat( sz.height+1, sz.width+1, CV_32SC1, tilted->data.ptr ); //长宽+1 4通道8位
_tilted = &tilted1; //长宽+1 4通道8位
}
norm1 = cvMat( sz1.height, sz1.width, CV_32FC1, norm_img ? norm_img->data.ptr : 0 ); //norm1 图像 减 分类器行列 4通道
mask1 = cvMat( sz1.height, sz1.width, CV_8UC1, temp->data.ptr ); //mask1 灰度图
cvResize( img, &img1, CV_INTER_LINEAR ); //img双线性插值 输出到img1
cvIntegral( &img1, &sum1, &sqsum1, _tilted ); //计算积分图像
if( use_ipp && icvRectStdDev_32s32f_C1R_p( sum1.data.i, sum1.step,
sqsum1.data.db, sqsum1.step, norm1.data.fl, norm1.step, sz1, rect1 ) < 0 )
use_ipp = 0;
if( use_ipp ) //如果ipp=true (intel视频处理加速等的函数库)
{
positive = mask1.cols*mask1.rows; //mask1长乘宽–>positive
cvSet( &mask1, cvScalarAll(255) ); //mask1赋值为255
for( i = 0; i < cascade->count; i++ )
{
if( icvApplyHaarClassifier_32s32f_C1R_p(sum1.data.i, sum1.step,
norm1.data.fl, norm1.step, mask1.data.ptr, mask1.step,
sz1, &positive, cascade->hid_cascade->stage_classifier[i].threshold,
cascade->hid_cascade->ipp_stages[i]) < 0 )
{
use_ipp = 0; //ipp=false;
break;
}
if( positive <= 0 )
break;
}
}
if( !use_ipp ) //如果ipp=false
{
cvSetImagesForHaarClassifierCascade( cascade, &sum1, &sqsum1, 0, 1. );
for( y = 0, positive = 0; y < sz1.height; y++ )
for( x = 0; x < sz1.width; x++ )
{
mask1.data.ptr[mask1.step*y + x] =
cvRunHaarClassifierCascade( cascade, cvPoint(x,y), 0 ) > 0; //匹配图像.
positive += mask1.data.ptr[mask1.step*y + x];
}
}
if( positive > 0 )
{
for( y = 0; y < sz1.height; y++ )
for( x = 0; x < sz1.width; x++ )
if( mask1.data.ptr[mask1.step*y + x] != 0 )
{
CvRect obj_rect = { cvRound(y*factor), cvRound(x*factor),
win_size.width, win_size.height };
cvSeqPush( seq, &obj_rect ); //将匹配块放到seq中
}
}
}
}
else //!(flag && 匹配图)
{
cvIntegral( img, sum, sqsum, tilted );
if( do_canny_pruning )
{
sumcanny = cvCreateMat( img->rows + 1, img->cols + 1, CV_32SC1 ); //如果 做canny边缘检测
cvCanny( img, temp, 0, 50, 3 );
cvIntegral( temp, sumcanny );
}
if( (unsigned)split_stage >= (unsigned)cascade->count ||
cascade->hid_cascade->is_tree )
{
split_stage = cascade->count;
npass = 1;
}
for( factor = 1; factor*cascade->orig_window_size.width < img->cols – 10 && //匹配
factor*cascade->orig_window_size.height < img->rows – 10;
factor *= scale_factor )
{
const double ystep = MAX( 2, factor );
CvSize win_size = { cvRound( cascade->orig_window_size.width * factor ),
cvRound( cascade->orig_window_size.height * factor )};
CvRect equ_rect = { 0, 0, 0, 0 };
int *p0 = 0, *p1 = 0, *p2 = 0, *p3 = 0;
int *pq0 = 0, *pq1 = 0, *pq2 = 0, *pq3 = 0;
int pass, stage_offset = 0;
int stop_height = cvRound((img->rows – win_size.height) / ystep);
if( win_size.width < min_size.width || win_size.height < min_size.height ) //超边跳出
continue;
cvSetImagesForHaarClassifierCascade( cascade, sum, sqsum, tilted, factor ); //匹配
cvZero( temp ); //清空temp数组
if( do_canny_pruning ) //canny边缘检测
{
equ_rect.x = cvRound(win_size.width*0.15);
equ_rect.y = cvRound(win_size.height*0.15);
equ_rect.width = cvRound(win_size.width*0.7);
equ_rect.height = cvRound(win_size.height*0.7);
p0 = (int*)(sumcanny->data.ptr + equ_rect.y*sumcanny->step) + equ_rect.x;
p1 = (int*)(sumcanny->data.ptr + equ_rect.y*sumcanny->step)
+ equ_rect.x + equ_rect.width;
p2 = (int*)(sumcanny->data.ptr + (equ_rect.y + equ_rect.height)*sumcanny->step) + equ_rect.x;
p3 = (int*)(sumcanny->data.ptr + (equ_rect.y + equ_rect.height)*sumcanny->step)
+ equ_rect.x + equ_rect.width;
pq0 = (int*)(sum->data.ptr + equ_rect.y*sum->step) + equ_rect.x;
pq1 = (int*)(sum->data.ptr + equ_rect.y*sum->step)
+ equ_rect.x + equ_rect.width;
pq2 = (int*)(sum->data.ptr + (equ_rect.y + equ_rect.height)*sum->step) + equ_rect.x;
pq3 = (int*)(sum->data.ptr + (equ_rect.y + equ_rect.height)*sum->step)
+ equ_rect.x + equ_rect.width;
}
cascade->hid_cascade->count = split_stage; //分裂级
for( pass = 0; pass < npass; pass++ )
{
#ifdef _OPENMP
#pragma omp parallel for num_threads(max_threads), schedule(dynamic)
#endif
for( int _iy = 0; _iy < stop_height; _iy++ )
{
int iy = cvRound(_iy*ystep);
int _ix, _xstep = 1;
int stop_width = cvRound((img->cols – win_size.width) / ystep);
uchar* mask_row = temp->data.ptr + temp->step * iy;
for( _ix = 0; _ix < stop_width; _ix += _xstep )
{
int ix = cvRound(_ix*ystep); // it really should be ystep
if( pass == 0 ) //第一次循环 做
{
int result;
_xstep = 2;
if( do_canny_pruning ) //canny边缘检测
{
int offset;
int s, sq;
offset = iy*(sum->step/sizeof(p0[0])) + ix;
s = p0[offset] – p1[offset] – p2[offset] + p3[offset];
sq = pq0[offset] – pq1[offset] – pq2[offset] + pq3[offset];
if( s < 100 || sq < 20 )
continue;
}
result = cvRunHaarClassifierCascade( cascade, cvPoint(ix,iy), 0 ); //匹配结果存到result里
if( result > 0 )
{
if( pass < npass – 1 )
mask_row[ix] = 1;
else
{
CvRect rect = cvRect(ix,iy,win_size.width,win_size.height);
#ifndef _OPENMP //如果用OpenMP
cvSeqPush( seq, &rect ); //result 放到seq中
#else //如果不用OpenMP
cvSeqPush( seq_thread[omp_get_thread_num()], &rect ); //result放到seq_thread里
#endif
}
}
if( result < 0 )
_xstep = 1;
}
else if( mask_row[ix] ) //不是第一次
{
int result = cvRunHaarClassifierCascade( cascade, cvPoint(ix,iy),
stage_offset );
if( result > 0 )
{
if( pass == npass – 1 ) //如果是最后一次
{
CvRect rect = cvRect(ix,iy,win_size.width,win_size.height);
#ifndef _OPENMP
cvSeqPush( seq, &rect );
#else
cvSeqPush( seq_thread[omp_get_thread_num()], &rect );
#endif
}
}
else
mask_row[ix] = 0;
}
}
}
stage_offset = cascade->hid_cascade->count;
cascade->hid_cascade->count = cascade->count;
}
}
}
#ifdef _OPENMP
// gather the results //收集结果
for( i = 0; i < max_threads; i++ )
{
CvSeq* s = seq_thread[i];
int j, total = s->total;
CvSeqBlock* b = s->first;
for( j = 0; j < total; j += b->count, b = b->next )
cvSeqPushMulti( seq, b->data, b->count ); //结果输出到seq
}
#endif
if( min_neighbors != 0 )
{
// group retrieved rectangles in order to filter out noise 收集找出的匹配块,过滤噪声
int ncomp = cvSeqPartition( seq, 0, &idx_seq, is_equal, 0 );
CV_CALL( comps = (CvAvgComp*)cvAlloc( (ncomp+1)*sizeof(comps[0])));
memset( comps, 0, (ncomp+1)*sizeof(comps[0]));
// count number of neighbors 计算相邻个数
for( i = 0; i < seq->total; i++ )
{
CvRect r1 = *(CvRect*)cvGetSeqElem( seq, i );
int idx = *(int*)cvGetSeqElem( idx_seq, i );
assert( (unsigned)idx < (unsigned)ncomp );
comps[idx].neighbors++;
comps[idx].rect.x += r1.x;
comps[idx].rect.y += r1.y;
comps[idx].rect.width += r1.width;
comps[idx].rect.height += r1.height;
}
// calculate average bounding box 计算重心
for( i = 0; i < ncomp; i++ )
{
int n = comps[i].neighbors;
if( n >= min_neighbors )
{
CvAvgComp comp;
comp.rect.x = (comps[i].rect.x*2 + n)/(2*n);
comp.rect.y = (comps[i].rect.y*2 + n)/(2*n);
comp.rect.width = (comps[i].rect.width*2 + n)/(2*n);
comp.rect.height = (comps[i].rect.height*2 + n)/(2*n);
comp.neighbors = comps[i].neighbors;
cvSeqPush( seq2, &comp ); //结果输入到seq2
}
}
// filter out small face rectangles inside large face rectangles 在大的面块中找出小的面块
for( i = 0; i < seq2->total; i++ ) //在seq2中寻找
{
CvAvgComp r1 = *(CvAvgComp*)cvGetSeqElem( seq2, i ); //r1指向结果
int j, flag = 1;
for( j = 0; j < seq2->total; j++ )
{
CvAvgComp r2 = *(CvAvgComp*)cvGetSeqElem( seq2, j );
int distance = cvRound( r2.rect.width * 0.2 );
if( i != j &&
r1.rect.x >= r2.rect.x – distance &&
r1.rect.y >= r2.rect.y – distance &&
r1.rect.x + r1.rect.width <= r2.rect.x + r2.rect.width + distance &&
r1.rect.y + r1.rect.height <= r2.rect.y + r2.rect.height + distance &&
(r2.neighbors > MAX( 3, r1.neighbors ) || r1.neighbors < 3) )
{
flag = 0;
break;
}
}
if( flag )
{
cvSeqPush( result_seq, &r1 ); //添加r1到返回结果.
}
}
}
__END__;