图像边缘检测经典算子及MATLAB实现

一、边缘检测

边缘是图象最基本的特征. 边缘检测在计算机视觉、图象分析等应用中起着重要的作用,是图象分析与识别的重要环节,这是因为子图象的边缘包含了用于识别的有用信息. 所以边缘检测是图像分析和模式识别的主要特征提取手段。所谓边缘是指其周围像素灰度后阶变化或屋顶状变化的那些像素的集合,它存在于目标与背景、目标与目标、区域与区域,基元与基元之间。 因此它是图象分割所依赖的重要的特征,也是纹理特征的重要信息源和形状特征的基础;而图象的纹理形状特征的提取又常常依赖于图象分割。 图象的边缘提取也是图象匹配的基础,因为它是位置的标志,对灰度的变化不敏感,它可作为匹配的特征点。

二、边缘检测经典算子及实现

目前常用的边缘检测方法有:Roberts边缘检测算子、Sobel边缘检测算子、Prewitt边缘检测算子、Laplace边缘检测算子等等。

1、Roberts边缘检测算子

Roberts边缘检测算子根据任意一对互相垂直方向上的差分可用来计算梯度的原理,采用对角线方向相邻两像素之差。

MATLAB实验代码如下:

clear;
sourcePic=imread('lena.jpg'); %读取原图像
grayPic=mat2gray(sourcePic); %实现图像矩阵的归一化操作
[m,n]=size(grayPic);
newGrayPic=grayPic;%为保留图像的边缘一个像素
robertsNum=0; 

你可能感兴趣的:(图像处理,计算机视觉)