【算法基础学习 4】互补滤波算法——PX4姿态估计

目录

应用场景

名词解释

陀螺仪

加速度计

磁力计(又叫磁罗盘)

坐标系

姿态表示

滤波原理

滤波主要过程

预备知识

预测

校正

加速度计校正

磁力计校正

更新四元数

源码分析

主程序运行流程图

函数功能简述

源码分析

头文件

using @@@

namespace attitude_estimator_q

类定义: class AttitudeEstimatorQ

构造函数   

析构函数

start();

print();

task_main_trampoline();

task_main();

update_parameters();

init();

update();

update_mag_declination();

attitude_estimator_q_main();


前言:多旋翼的姿态估计算法通常采用自适应显示互补滤波算法、扩展卡尔曼滤波算法、梯度下降算法等,以上三种方法均是对姿态解算的实现,采用的基本思路都是利用陀螺仪的动态稳定性来估计实时姿态,同时由于陀螺仪随时间积分累计漂移误差的固有缺陷,需找一个不随时间变化影响的传感器来估计姿态并进行修正标定。三种方法各有优缺点,互补与梯度算法更适用于处理性能受限的飞行器,例如微型四轴等采用低频Cortex-M0或M1的处理器,而在条件允许性能足够的情况下,建议考虑采用扩展卡尔曼滤波的算法。

PX4 源码中采用的是改进的互补滤波算法,在原有加速度计校准陀螺仪的基础上,增加磁力计和GPS数据进行更进一步的四元数校准补偿,它的优点是运算简单,因此成为PX4中默认的姿态解算算法)

通过下文介绍的多旋翼姿态估计来了解互补滤波算法

应用场景

本文中 mahony 的应用场景为 多旋翼无人机的姿态估计。 

 
陀螺仪、加速度计、MPU6050 详述

名词解释

陀螺仪

陀螺仪,测量角速度,具有高动态特性,它是一个间接测量角度的器件。它测量的是角度的导数,即角速度,要将角速度对时间积分才能得到角度。由于噪声等误差影响,在积分作用下不断积累,最终导致陀螺仪的低频干扰和漂移。

加速度计

输出当前加速度(包含重力加速度 g)的方向【也叫重力感应器】,在悬停时,输出为 g。由其测量原理导致的高频信号敏感,使得加速度计在振动环境中高频干扰较大。

磁力计(又叫磁罗盘)

输出为当前机体与地磁场的夹角。测量原理与指南针相似。低频特性较好,易受周围磁场干扰。 
磁力计的工作原理参考:http://blog.sina.com.cn/s/blog_402c071e0102v8ig.html

坐标系

  • 导航坐标系:在多旋翼中,又叫地球坐标系、地理坐标系。通常,采用北东地(NED)构成坐标系的 X,Y,Z 轴。
  • 机体坐标系 :固联在多旋翼飞行器上,即,坐标系原点定位于飞行器中心点(假设中心点与重心点重合)。

关于航空导航用到的坐标系,请参考 AIAA 系列丛书。在多旋翼中,因为只在低空飞行,且时间较短,只需要以上两个。

姿态表示

  • 欧拉角 :较直观,描述刚体在三维欧式空间中的姿态。此时,坐标系为机体坐标系,随着刚体的旋转而旋转。缺点:万向节锁。 
  • 四元数:由一组四维向量,表示刚体的三维旋转。适合用于计算机计算。 
  • 方向余弦矩阵DCM:用欧拉角余弦值或四元数,表示的坐标系的旋转。

滤波原理

互补滤波要求两个信号的干扰噪声处在不同的频率,通过设置两个滤波器的截止频率,确保融合后的信号能够覆盖需求频率。 
在 IMU 的姿态估计中,互补滤波器对陀螺仪(低频噪声)使用高通滤波;对加速度/磁力计(高频噪声)使用低频滤波。 
(此处尚未对传感器数据实测,噪声和有用频率未知。。。。待后期补足)

互补滤波中,两个滤波器的截止频率一致,此时就需要根据有用频率的值对其进行取舍。

机体水平时,加速度计无法测量绕 Z 轴的旋转量,即偏航角。磁力计也有同样问题,无法测得要磁轴的旋转量。故,需要加速度计和磁力计同时对陀螺仪进行校正。

滤波主要过程

【算法基础学习 4】互补滤波算法——PX4姿态估计_第1张图片


式中,q^ 表示系统姿态估计的四元数表示; δ 是经过 PI 调节器产生的新息; e 表示实测的惯性向量 v¯ 和预测的向量v^ 之间的相对旋转(误差)。 
P(⋅) —— pure quaternion operator(四元数实部为0),表示只有旋转。

PI 调节器中:

参数 kp 用于控制加速度计和陀螺仪之间的交叉频率
参数 kI 用于校正陀螺仪误差


预备知识

主要是公式,不包含推导过程。。。。

欧拉角与机体角速度的关系:

【算法基础学习 4】互补滤波算法——PX4姿态估计_第2张图片


旋转矩阵与机体角速度的关系:

四元数与机体角速度的关系:

【算法基础学习 4】互补滤波算法——PX4姿态估计_第3张图片

参考:北航全权老师课件 第五章内容、惯性导航(秦永元)第九章内容。

预测

与卡尔曼滤波相似,互补滤波也分为预测-校正。 
在预测环节,由三轴陀螺仪测得的角速度,通过式(1)计算出四元数姿态预测。表示从地球坐标系到机体坐标系,或机体坐标系姿态在地球坐标系下的表示。

校正

在预测环节得到的四元数 ,通过加速度计和磁力计的值进行校正。该环节通常分为两部分:

通过加速度计得到 ,然后校正四元数中的横滚(roll)和俯仰(pitch)分量。
当磁力计可读时,通过 校正四元数中的偏航(yaw)分量。

加速度计校正

加速度计信号首先经过低通滤波器(消除高频噪声):


然后,对得到的结果进行归一化(normalized)


计算偏差:


式中, v表示重力向量在机体坐标系的向量。

【算法基础学习 4】互补滤波算法——PX4姿态估计_第4张图片


此时,由 v 与加速度计向量垂直分量叉乘,得到误差值。【两个物理意义相同的向量,理论上叉乘为零】

磁力计校正

数据预处理与加速度计相同,先滤波,然后归一化,得到

1. 无 GPS 校准时:
计算误差:

式中,w 计算过程如下:

磁力计的输出(m)在机体坐标系下,将其转换到导航坐标系:

导航坐标系的 x 轴与正北对齐,故,可以将磁力计在 xoy 平面的投影折算到 x 轴。

再次变换到机体坐标系:


2. 有 GPS 校准时:
在 px4 中,磁力计使用 GPS 信息 [0,0,mag] 进行校准,故,公式与加速度计相同。


此时,由 w 与磁力计向量叉乘,得到误差值。【两个物理意义相同的向量,理论上叉乘为零】

更新四元数

由加速度计和磁力计校准得到的误差值:

由该误差值得到修正值:(只有 ki 修正bias)

修正后的角速度值:

根据一阶龙格库塔方法求解一阶微分方程:

可以求出四元数微分方程的差分形式:

四元数规范化:


源码分析

该部分源码直接截取 px4 开源飞控源码(BSD证书)。 
px4 为 pixhawk 飞控的固件代码,内部涉及很多滤波及导航的算法。有较大参考价值。

源码,参考日期:20160603;

https://github.com/hsteinhaus/PX4Firmware/blob/master/src/modules/attitude_estimator_so3/attitude_estimator_so3_main.cpp

https://github.com/ArduPilot/PX4Firmware/blob/master/src/modules/attitude_estimator_q/attitude_estimator_q_main.cpp

           参数            默认值    

  • ATT_W_ACC     0.2f    加速度计权重
  • ATT_W_MAG    0.1f    磁力计权重
  • ATT_W_EXT_HDG    0.1f    外部航向权重
  • ATT_W_GYRO_BIAS    0.1f    陀螺仪偏差权重
  • ATT_MAG_DECL    0.0f    磁偏角(°)
  • ATT_MAG_DECL_A    1    启用基于GPS的自动磁偏角校正
  • ATT_EXT_HDG_M    0    外部航向模式
  • ATT_ACC_COMP    1    启用基于GPS速度的加速度补偿
  • ATT_BIAS_MAX    0.05f    陀螺仪偏差上限
  • ATT_VIBE_THRESH    0.2f    振动水平报警阈值

主程序运行流程图

函数功能简述

  • AttitudeEstimatorQ::AttitudeEstimatorQ();   构造函数,初始化参数;
  • AttitudeEstimatorQ::~AttitudeEstimatorQ(); 析构函数,杀掉所有任务;
  • int AttitudeEstimatorQ::start();   启动【attitude_estimator_q】进程,主函数入口: task_main_trampoline
  • void AttitudeEstimatorQ::print();  打印姿态信息;
  • void AttitudeEstimatorQ::task_main_trampoline(int argc, char *argv[])

  {

   attitude_estimator_q::instance->task_main();

  }

  • void AttitudeEstimatorQ::task_main();  主任务进程;
  • void AttitudeEstimatorQ::update_parameters(bool force);   

false: 查看参数是否更新;

true: 获取新参数, 并由磁偏角更新四元数;

  • bool AttitudeEstimatorQ::init();    由加速度计和磁力计初始化旋转矩阵,有GPS时,校正磁偏角。
  • bool AttitudeEstimatorQ::update(float dt);  调用init(); 互补滤波
  • void AttitudeEstimatorQ::update_mag_declination(float new_declination);  使用磁偏角更新四元数
  • int attitude_estimator_q_main(int argc, char *argv[]);

attitude_estimator_q { start }:实例化instance,运行instance->start();

attitude_estimator_q { stop }:delete instance,指针置空;

attitude_estimator_q { status}:instance->print(),打印姿态信息。


源码分析

此处源码逐行分析,可以使用 Ctrl+f 快速定位;
uORB 相关的数据结构,请参考 px4/Firmware/msg;

/*代码前的注释段(L34~L40)
 * @file attitude_estimator_q_main.cpp
 *
 * Attitude estimator (quaternion based)
 *姿态估计(基于四元数)
 * @author Anton Babushkin 
 */

头文件

(l42~l76)
#include 
#include //add missing check;
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include //视觉位置估计, 未找到文件【待查】;
#include //mocap-->vicon;
#include 
#include 
#include 
#include 

#include 
#include 
#include 
#include 

#include 
#include 
#include 
#include 
#include 


using @@@

(l78~l82)
extern "C" __EXPORT int attitude_estimator_q_main(int argc, char *argv[]);

using math::Vector;
using math::Matrix;
using math::Quaternion;

此处,extern “C” 表示以 C 格式编译; __EXPORT 表示 将函数名输出到链接器(Linker); using 关键字 表示引入名称到 using 说明出现的声明区域。。

__export 
This keyword aids those programming Microsoft Windows. __export causes the function name to be exported to the linker.

namespace attitude_estimator_q

(l84~l89)
class AttitudeEstimatorQ;

namespace attitude_estimator_q
{
AttitudeEstimatorQ *instance;
}//定义命名空间,通过命名空间调用instance;

类定义: class AttitudeEstimatorQ

 

    (l92~l210)
class AttitudeEstimatorQ
{//类定义; 
public:
    AttitudeEstimatorQ();
    //构造函数
    ~AttitudeEstimatorQ();
    //析构函数
     int        start();
    //开始任务,成功--返回OK;
    static void task_main_trampoline(int argc, char *argv[]);
    //跳转到 task_main() ,未使用传入参数;static函数只能被本文件中的函数调用;
    void        task_main();
    void        print();
private:
    static constexpr float _dt_max = 0.02;//最大时间间隔;
    //constexpr(constant expression)常数表达式,c11新关键字;
    //优化语法检查和编译速度;
    bool        _task_should_exit = false;
    //如果为 true ,任务退出;
    int     _control_task = -1;
    //进程ID, 默认-1表示没有任务;
    int     _sensors_sub = -1;//sensor_combined subscribe(订阅);
    int     _params_sub = -1;//parameter_update subscribe;
    int     _vision_sub = -1;//视觉位置估计;
    int     _mocap_sub = -1;//vicon姿态位置估计;
    int     _airspeed_sub = -1;//airspeed subscribe;
    int     _global_pos_sub = -1;//vehicle_global_position subscribe;
    orb_advert_t    _att_pub = nullptr;//vehicle_attitude publish(发布);
    orb_advert_t    _ctrl_state_pub = nullptr;//发布控制状态主题control_state;
    orb_advert_t    _est_state_pub = nullptr;//estimator_status

    struct {
        param_t w_acc;//ATT_W_ACC
        param_t w_mag;//ATT_W_MAG
        param_t w_ext_hdg;//ATT_W_EXT_HDG 外部航向权重;
        param_t w_gyro_bias;//ATT_W_GYRO_BIAS
        param_t mag_decl;//ATT_MAG_DECL
        param_t mag_decl_auto;//ATT_MAG_DECL_A 磁偏角自动校正;
        param_t acc_comp;//ATT_ACC_COMP
        param_t bias_max;//ATT_BIAS_MAX 陀螺仪偏差上限;
        param_t vibe_thresh;//ATT_VIBE_THRESH 振动报警阈值;
        param_t ext_hdg_mode;//ATT_EXT_HDG_M 外部航向模式;
    }       _params_handles;
    //有用参数的句柄;

    float       _w_accel = 0.0f;
    //ATT_W_ACC >>> w_acc >>> _w_accel;
    float       _w_mag = 0.0f;
    float       _w_ext_hdg = 0.0f;
    float       _w_gyro_bias = 0.0f;
    float       _mag_decl = 0.0f;
    bool        _mag_decl_auto = false;
    bool        _acc_comp = false;
    float       _bias_max = 0.0f;
    float       _vibration_warning_threshold = 1.0f;//振动警告阈值;
    hrt_abstime _vibration_warning_timestamp = 0;
    int     _ext_hdg_mode = 0;

    Vector<3>   _gyro;//陀螺仪;
    Vector<3>   _accel;//加速度计;
    Vector<3>   _mag;//磁力计;

    vision_position_estimate_s _vision = {};//buffer;
    Vector<3>   _vision_hdg;

    att_pos_mocap_s _mocap = {};//buffer;
    Vector<3>   _mocap_hdg;

    airspeed_s _airspeed = {};//buffer;

    Quaternion  _q;//四元数;
    Vector<3>   _rates;//姿态角速度;
    Vector<3>   _gyro_bias;//陀螺仪偏差;

    vehicle_global_position_s _gpos = {};//buffer;
    Vector<3>   _vel_prev;//前一时刻的速度:
    Vector<3>   _pos_acc;//加速度(body frame??)

    DataValidatorGroup _voter_gyro;//数据验证,剔除异常值;
    DataValidatorGroup _voter_accel;
    DataValidatorGroup _voter_mag;

    //姿态速度的二阶低通滤波器;
    math::LowPassFilter2p _lp_roll_rate;
    math::LowPassFilter2p _lp_pitch_rate;
    math::LowPassFilter2p _lp_yaw_rate;

    //绝对时间(ms)
    hrt_abstime _vel_prev_t = 0;//前一时刻计算速度时的绝对时间;

    bool        _inited = false;//初始化标识;
    bool        _data_good = false;//数据可用;
    bool        _failsafe = false;//故障保护;
    bool        _vibration_warning = false;//振动警告;
    bool        _ext_hdg_good = false;//外部航向可用;

    orb_advert_t    _mavlink_log_pub = nullptr;//mavlink log advert;

    //performance measuring tools (counters)
    perf_counter_t _update_perf;
    perf_counter_t _loop_perf;//未看到使用。。。;

    void update_parameters(bool force);//更新参数;

    int update_subscriptions();//未使用【待查??】

    bool init();

    bool update(float dt);

    // 偏航角旋转后,立即更新磁偏角;
    void update_mag_declination(float new_declination);
};

构造函数
   

(l213~l235)
AttitudeEstimatorQ::AttitudeEstimatorQ() :
    _vel_prev(0, 0, 0),
    _pos_acc(0, 0, 0),
    _voter_gyro(3),//数据成员3个;
    _voter_accel(3),
    _voter_mag(3),
    _lp_roll_rate(250.0f, 30.0f),//低通滤波(采样频率,截止频率);
    _lp_pitch_rate(250.0f, 30.0f),
    _lp_yaw_rate(250.0f, 20.0f)
{
    _voter_mag.set_timeout(200000);//磁力计超时;

    //读取Attitude_estimator_q_params.c中的参数;
    _params_handles.w_acc       = param_find("ATT_W_ACC");
    _params_handles.w_mag       = param_find("ATT_W_MAG");
    _params_handles.w_ext_hdg   = param_find("ATT_W_EXT_HDG");//外部航向权重;
    _params_handles.w_gyro_bias = param_find("ATT_W_GYRO_BIAS");
    _params_handles.mag_decl    = param_find("ATT_MAG_DECL");
    _params_handles.mag_decl_auto   = param_find("ATT_MAG_DECL_A");//磁偏角自动校正;
    _params_handles.acc_comp    = param_find("ATT_ACC_COMP");
    _params_handles.bias_max    = param_find("ATT_BIAS_MAX");//陀螺仪偏差上限;
    _params_handles.vibe_thresh = param_find("ATT_VIBE_THRESH");//振动警告阈值;
    _params_handles.ext_hdg_mode    = param_find("ATT_EXT_HDG_M");
}

析构函数

l240~l262
AttitudeEstimatorQ::~AttitudeEstimatorQ()
{//杀掉所有任务;
    if (_control_task != -1) {
        /* task wakes up every 100ms or so at the longest */
        _task_should_exit = true;

        /* wait for a second for the task to quit at our request */
        unsigned i = 0;

        do {
            /* wait 20ms */
            usleep(20000);

            /* if we have given up, kill it */
            if (++i > 50) {
                px4_task_delete(_control_task);
                break;
            }
        } while (_control_task != -1);
    }

    attitude_estimator_q::instance = nullptr;
}

start();

l264~l282
int AttitudeEstimatorQ::start()
{
    ASSERT(_control_task == -1);

    /* start the task */
    //启动任务,返回进程ID;
    _control_task = px4_task_spawn_cmd("attitude_estimator_q",/*name*/
                       SCHED_DEFAULT,/*任务调度程序*/
                       SCHED_PRIORITY_MAX - 5,/*优先级*/
                       2500,/*栈大小*/
                       (px4_main_t)&AttitudeEstimatorQ::task_main_trampoline,/*主函数入口*/
                       nullptr);

    if (_control_task < 0) {
        warn("task start failed");
        return -errno;
    }

    return OK;
}

print();


l284~l292
void AttitudeEstimatorQ::print()
{//打印当前姿态信息;
    warnx("gyro status:");
    _voter_gyro.print();
    warnx("accel status:");
    _voter_accel.print();
    warnx("mag status:");
    _voter_mag.print();
}

task_main_trampoline();

l294~l297
void AttitudeEstimatorQ::task_main_trampoline(int argc, char *argv[])
{
    attitude_estimator_q::instance->task_main();
}

task_main();

l299~l655
void AttitudeEstimatorQ::task_main()
{

#ifdef __PX4_POSIX
//记录事件执行所花费的时间,performance counters;
    perf_counter_t _perf_accel(perf_alloc_once(PC_ELAPSED, "sim_accel_delay"));
    perf_counter_t _perf_mpu(perf_alloc_once(PC_ELAPSED, "sim_mpu_delay"));
    perf_counter_t _perf_mag(perf_alloc_once(PC_ELAPSED, "sim_mag_delay"));
#endif
//从uORB订阅主题;
    _sensors_sub = orb_subscribe(ORB_ID(sensor_combined));
//订阅传感器读数,包含数据参见:Firmware/msg/sensor_combined.msg
    _vision_sub = orb_subscribe(ORB_ID(vision_position_estimate));//视觉;
    _mocap_sub = orb_subscribe(ORB_ID(att_pos_mocap));//vicon; 

    _airspeed_sub = orb_subscribe(ORB_ID(airspeed));//空速,见Firmware/msg/airspeed.msg;

    _params_sub = orb_subscribe(ORB_ID(parameter_update));//bool saved;
    _global_pos_sub = orb_subscribe(ORB_ID(vehicle_global_position));//位置估计值(GPS);

    update_parameters(true);//获取新参数;

    hrt_abstime last_time = 0;

    px4_pollfd_struct_t fds[1] = {};
    fds[0].fd = _sensors_sub;//文件描述符;
    fds[0].events = POLLIN;//读取事件标识;
    //POLLIN: data other than high-priority data may be read without blocking;
    while (!_task_should_exit) {
        int ret = px4_poll(fds, 1, 1000);
        //timeout = 1000; fds_size = 1; 详见Linux的poll函数;
        //对字符设备读写;

        if (ret < 0) {
            // Poll error, sleep and try again
            usleep(10000);
            PX4_WARN("Q POLL ERROR");
            continue;

        } else if (ret == 0) {
            // Poll timeout, do nothing
            PX4_WARN("Q POLL TIMEOUT");
            continue;
        }

        update_parameters(false);//检查orb是否更新;

        // Update sensors
        sensor_combined_s sensors;

        int best_gyro = 0;
        int best_accel = 0;
        int best_mag = 0;

        if (!orb_copy(ORB_ID(sensor_combined), _sensors_sub, &sensors)) {
            // Feed validator with recent sensor data
            //(put)将最近的传感器数据送入验证组(DataValidatorGroup)

            for (unsigned i = 0; i < (sizeof(sensors.gyro_timestamp) / sizeof(sensors.gyro_timestamp[0])); i++) {
            //遍历每个陀螺仪数据;

                /* ignore empty fields */
                //忽略空值;
                if (sensors.gyro_timestamp[i] > 0) {

                    float gyro[3];

                    for (unsigned j = 0; j < 3; j++) {
                        if (sensors.gyro_integral_dt[i] > 0) {
                        //delta time 大于零;
                            gyro[j] = (double)sensors.gyro_integral_rad[i * 3 + j] / (sensors.gyro_integral_dt[i] / 1e6);
                            //=角度/时间(1e6用于us->s转换);
                        } else {
                            /* fall back to angular rate */
                            //没有数据更新,回退;
                            gyro[j] = sensors.gyro_rad_s[i * 3 + j];
                        }
                    }

                    _voter_gyro.put(i, sensors.gyro_timestamp[i], &gyro[0], sensors.gyro_errcount[i], sensors.gyro_priority[i]);
                    //最后一个参数gyro_priority[]用于支持传感器优先级;
                }

                /* ignore empty fields */
                if (sensors.accelerometer_timestamp[i] > 0) {
                    _voter_accel.put(i, sensors.accelerometer_timestamp[i], &sensors.accelerometer_m_s2[i * 3],
                             sensors.accelerometer_errcount[i], sensors.accelerometer_priority[i]);
                }
                //NED 坐标系下, 单位 m/s^2

                /* ignore empty fields */
                if (sensors.magnetometer_timestamp[i] > 0) {
                    _voter_mag.put(i, sensors.magnetometer_timestamp[i], &sensors.magnetometer_ga[i * 3],
                               sensors.magnetometer_errcount[i], sensors.magnetometer_priority[i]);
                }
                //NED 坐标系下, 单位 Gauss
            }

            // Get best measurement values
            //获取最佳测量值(DataValidatorGroup)
            hrt_abstime curr_time = hrt_absolute_time();
            _gyro.set(_voter_gyro.get_best(curr_time, &best_gyro));
            _accel.set(_voter_accel.get_best(curr_time, &best_accel));
            _mag.set(_voter_mag.get_best(curr_time, &best_mag));

            if (_accel.length() < 0.01f) {
                warnx("WARNING: degenerate accel!");
                continue;
            }
            //退化,即非满秩,此处为奇异值(0);

            if (_mag.length() < 0.01f) {
                warnx("WARNING: degenerate mag!");
                continue;
            }//同上;

            _data_good = true;//数据可用;

            if (!_failsafe) {
                uint32_t flags = DataValidator::ERROR_FLAG_NO_ERROR;

#ifdef __PX4_POSIX
                perf_end(_perf_accel);//执行事件结束,计算均值方差等;
                perf_end(_perf_mpu);
                perf_end(_perf_mag);
#endif

                if (_voter_gyro.failover_count() > 0) {
                //陀螺仪数据故障计数大于0, 记录错误日志;
                    _failsafe = true;
                    flags = _voter_gyro.failover_state();
                    mavlink_and_console_log_emergency(&_mavlink_log_pub, "Gyro #%i failure :%s%s%s%s%s!",
                                      _voter_gyro.failover_index(),
                                      ((flags & DataValidator::ERROR_FLAG_NO_DATA) ? " No data" : ""),
                                      ((flags & DataValidator::ERROR_FLAG_STALE_DATA) ? " Stale data" : ""),
                                      ((flags & DataValidator::ERROR_FLAG_TIMEOUT) ? " Data timeout" : ""),
                                      ((flags & DataValidator::ERROR_FLAG_HIGH_ERRCOUNT) ? " High error count" : ""),
                                      ((flags & DataValidator::ERROR_FLAG_HIGH_ERRDENSITY) ? " High error density" : ""));
                }

                if (_voter_accel.failover_count() > 0) {
                //同上,故障日志;
                    _failsafe = true;
                    flags = _voter_accel.failover_state();
                    mavlink_and_console_log_emergency(&_mavlink_log_pub, "Accel #%i failure :%s%s%s%s%s!",
                                      _voter_accel.failover_index(),
                                      ((flags & DataValidator::ERROR_FLAG_NO_DATA) ? " No data" : ""),
                                      ((flags & DataValidator::ERROR_FLAG_STALE_DATA) ? " Stale data" : ""),
                                      ((flags & DataValidator::ERROR_FLAG_TIMEOUT) ? " Data timeout" : ""),
                                      ((flags & DataValidator::ERROR_FLAG_HIGH_ERRCOUNT) ? " High error count" : ""),
                                      ((flags & DataValidator::ERROR_FLAG_HIGH_ERRDENSITY) ? " High error density" : ""));
                }

                if (_voter_mag.failover_count() > 0) {
                //同上,故障日志;
                    _failsafe = true;
                    flags = _voter_mag.failover_state();
                    mavlink_and_console_log_emergency(&_mavlink_log_pub, "Mag #%i failure :%s%s%s%s%s!",
                                      _voter_mag.failover_index(),
                                      ((flags & DataValidator::ERROR_FLAG_NO_DATA) ? " No data" : ""),
                                      ((flags & DataValidator::ERROR_FLAG_STALE_DATA) ? " Stale data" : ""),
                                      ((flags & DataValidator::ERROR_FLAG_TIMEOUT) ? " Data timeout" : ""),
                                      ((flags & DataValidator::ERROR_FLAG_HIGH_ERRCOUNT) ? " High error count" : ""),
                                      ((flags & DataValidator::ERROR_FLAG_HIGH_ERRDENSITY) ? " High error density" : ""));
                }

                if (_failsafe) {
                //故障安全机制;
                    mavlink_and_console_log_emergency(&_mavlink_log_pub, "SENSOR FAILSAFE! RETURN TO LAND IMMEDIATELY");
                }
            }

            //若启用振动报警,且振动级别超过设定阈值,触发报警; 
            //振动级别由数据的方均根(RMS)给出;
            if (!_vibration_warning && (_voter_gyro.get_vibration_factor(curr_time) > _vibration_warning_threshold ||
                            _voter_accel.get_vibration_factor(curr_time) > _vibration_warning_threshold ||
                            _voter_mag.get_vibration_factor(curr_time) > _vibration_warning_threshold)) {

                if (_vibration_warning_timestamp == 0) {
                    _vibration_warning_timestamp = curr_time;

                } else if (hrt_elapsed_time(&_vibration_warning_timestamp) > 10000000) {
                    _vibration_warning = true;
                    mavlink_and_console_log_critical(&_mavlink_log_pub, "HIGH VIBRATION! g: %d a: %d m: %d",
                                     (int)(100 * _voter_gyro.get_vibration_factor(curr_time)),
                                     (int)(100 * _voter_accel.get_vibration_factor(curr_time)),
                                     (int)(100 * _voter_mag.get_vibration_factor(curr_time)));
                }

            } else {
                _vibration_warning_timestamp = 0;
            }
        }

        // Update vision and motion capture heading
        //更新视觉和vicon航向
        bool vision_updated = false;
        orb_check(_vision_sub, &vision_updated);

        bool mocap_updated = false;
        orb_check(_mocap_sub, &mocap_updated);

        if (vision_updated) {
            orb_copy(ORB_ID(vision_position_estimate), _vision_sub, &_vision);//将订阅主题的内容复制到buffer(_vision)中;
            math::Quaternion q(_vision.q);

            math::Matrix<3, 3> Rvis = q.to_dcm();
            math::Vector<3> v(1.0f, 0.0f, 0.4f);
            //没看出 v 向量具体含义,疑似磁偏校正;

            // Rvis is Rwr (robot respect to world) while v is respect to world.
            // Hence Rvis must be transposed having (Rwr)' * Vw
            // Rrw * Vw = vn. This way we have consistency
            _vision_hdg = Rvis.transposed() * v;
        }
        //通过视觉得到的姿态估计q->Rvis,将v转换到机体坐标系;

        if (mocap_updated) {
            orb_copy(ORB_ID(att_pos_mocap), _mocap_sub, &_mocap);
            math::Quaternion q(_mocap.q);
            math::Matrix<3, 3> Rmoc = q.to_dcm();

            math::Vector<3> v(1.0f, 0.0f, 0.4f);

            // Rmoc is Rwr (robot respect to world) while v is respect to world.
            // Hence Rmoc must be transposed having (Rwr)' * Vw
            // Rrw * Vw = vn. This way we have consistency
            _mocap_hdg = Rmoc.transposed() * v;
        }

        // Update airspeed
        bool airspeed_updated = false;
        orb_check(_airspeed_sub, &airspeed_updated);

        if (airspeed_updated) {
            orb_copy(ORB_ID(airspeed), _airspeed_sub, &_airspeed);
        }

        // Check for timeouts on data
        if (_ext_hdg_mode == 1) {
            _ext_hdg_good = _vision.timestamp_boot > 0 && (hrt_elapsed_time(&_vision.timestamp_boot) < 500000);

        } else if (_ext_hdg_mode == 2) {
            _ext_hdg_good = _mocap.timestamp_boot > 0 && (hrt_elapsed_time(&_mocap.timestamp_boot) < 500000);
        }

        bool gpos_updated;
        orb_check(_global_pos_sub, &gpos_updated);

        if (gpos_updated) {
            orb_copy(ORB_ID(vehicle_global_position), _global_pos_sub, &_gpos);

            if (_mag_decl_auto && _gpos.eph < 20.0f && hrt_elapsed_time(&_gpos.timestamp) < 1000000) {
                /* set magnetic declination automatically */
                                update_mag_declination(math::radians(get_mag_declination(_gpos.lat, _gpos.lon)));
            }
            //磁偏自动校正,且水平偏差的标准差小于20,根据位置估计值(GPS)(vehicle_global_position)校正磁偏角;
            //get_mag_declination()函数查表得到地磁偏角,进行补偿。
        }
        if (_acc_comp && _gpos.timestamp != 0 && hrt_absolute_time() < _gpos.timestamp + 20000 && _gpos.eph < 5.0f && _inited) {
            /* position data is actual */
            //基于GPS的位置信息,微分得到加速度值;
            if (gpos_updated) {
                Vector<3> vel(_gpos.vel_n, _gpos.vel_e, _gpos.vel_d);

                /* velocity updated */
                if (_vel_prev_t != 0 && _gpos.timestamp != _vel_prev_t) {
                    float vel_dt = (_gpos.timestamp - _vel_prev_t) / 1000000.0f;//时间间隔,单位(s)
                    /* calculate acceleration in body frame */
                    _pos_acc = _q.conjugate_inversed((vel - _vel_prev) / vel_dt);
                }//由ned坐标系下的速度求出机体坐标系下的加速度;

                _vel_prev_t = _gpos.timestamp;
                _vel_prev = vel;
            }

        } else {
            /* position data is outdated, reset acceleration */
            //位置信息已过时,重置;
            _pos_acc.zero();
            _vel_prev.zero();
            _vel_prev_t = 0;
        }

        /* time from previous iteration */
        hrt_abstime now = hrt_absolute_time();
        float dt = (last_time > 0) ? ((now  - last_time) / 1000000.0f) : 0.00001f;//用极小值0.00001表示零,预防除零错误;
        last_time = now;

        if (dt > _dt_max) {
            dt = _dt_max;
        }//时间间隔上限;

        if (!update(dt)) {
            continue;
        }//调用update(dt),**互补滤波**,更新四元数;
        //############若不熟悉update(),请转到函数查看;

        Vector<3> euler = _q.to_euler();

        struct vehicle_attitude_s att = {};
        att.timestamp = sensors.timestamp;

        att.roll = euler(0);
        att.pitch = euler(1);
        att.yaw = euler(2);

        att.rollspeed = _rates(0);
        att.pitchspeed = _rates(1);
        att.yawspeed = _rates(2);

        for (int i = 0; i < 3; i++) {
            att.g_comp[i] = _accel(i) - _pos_acc(i);
        }//补偿重力向量;

        /* copy offsets */
        memcpy(&att.rate_offsets, _gyro_bias.data, sizeof(att.rate_offsets));
        //memcpy(*dest,*src,size);

        Matrix<3, 3> R = _q.to_dcm();

        /* copy rotation matrix */
        memcpy(&att.R[0], R.data, sizeof(att.R));
        att.R_valid = true;
        memcpy(&att.q[0], _q.data, sizeof(att.q));
        att.q_valid = true;
        //获取姿态振动, RMS;
        att.rate_vibration = _voter_gyro.get_vibration_factor(hrt_absolute_time());
        att.accel_vibration = _voter_accel.get_vibration_factor(hrt_absolute_time());
        att.mag_vibration = _voter_mag.get_vibration_factor(hrt_absolute_time());

        /* the instance count is not used here */
        int att_inst;
        orb_publish_auto(ORB_ID(vehicle_attitude), &_att_pub, &att, &att_inst, ORB_PRIO_HIGH);
        //广播姿态信息;

        {//使用当前姿态,更新control_state,并发布;
            struct control_state_s ctrl_state = {};

            ctrl_state.timestamp = sensors.timestamp;

            /* attitude quaternions for control state */
            ctrl_state.q[0] = _q(0);
            ctrl_state.q[1] = _q(1);
            ctrl_state.q[2] = _q(2);
            ctrl_state.q[3] = _q(3);

            /* attitude rates for control state */
            //低通滤波,输入参数为当前值;
            ctrl_state.roll_rate = _lp_roll_rate.apply(_rates(0));

            ctrl_state.pitch_rate = _lp_pitch_rate.apply(_rates(1));

            ctrl_state.yaw_rate = _lp_yaw_rate.apply(_rates(2));

            /* Airspeed - take airspeed measurement directly here as no wind is estimated */
            if (PX4_ISFINITE(_airspeed.indicated_airspeed_m_s) && hrt_absolute_time() - _airspeed.timestamp < 1e6
                && _airspeed.timestamp > 0) {
                ctrl_state.airspeed = _airspeed.indicated_airspeed_m_s;
                ctrl_state.airspeed_valid = true;

            } else {
                ctrl_state.airspeed_valid = false;
            }

            /* the instance count is not used here */
            int ctrl_inst;
            /* publish to control state topic */
            //发布控制状态主题,control_state.msg。
            orb_publish_auto(ORB_ID(control_state), &_ctrl_state_pub, &ctrl_state, &ctrl_inst, ORB_PRIO_HIGH);
        }

        {
            struct estimator_status_s est = {};

            est.timestamp = sensors.timestamp;
            est.vibe[0] = _voter_accel.get_vibration_offset(est.timestamp, 0);
            est.vibe[1] = _voter_accel.get_vibration_offset(est.timestamp, 1);
            est.vibe[2] = _voter_accel.get_vibration_offset(est.timestamp, 2);

            /* the instance count is not used here */
            int est_inst;
            /* publish to control state topic */
            orb_publish_auto(ORB_ID(estimator_status), &_est_state_pub, &est, &est_inst, ORB_PRIO_HIGH);
        }
    }
}


update_parameters();

l657~l686
void AttitudeEstimatorQ::update_parameters(bool force)
{
    bool updated = force;

    if (!updated) {
        orb_check(_params_sub, &updated);//查看参数是否更新;
    }

    if (updated) {//获取新参数;
        parameter_update_s param_update;
        orb_copy(ORB_ID(parameter_update), _params_sub, ¶m_update);

        param_get(_params_handles.w_acc, &_w_accel);
        param_get(_params_handles.w_mag, &_w_mag);
        param_get(_params_handles.w_ext_hdg, &_w_ext_hdg);
        param_get(_params_handles.w_gyro_bias, &_w_gyro_bias);
        float mag_decl_deg = 0.0f;
        param_get(_params_handles.mag_decl, &mag_decl_deg);
        update_mag_declination(math::radians(mag_decl_deg));
        int32_t mag_decl_auto_int;
        param_get(_params_handles.mag_decl_auto, &mag_decl_auto_int);
        _mag_decl_auto = mag_decl_auto_int != 0;//自动磁偏角校正;
        int32_t acc_comp_int;
        param_get(_params_handles.acc_comp, &acc_comp_int);
        _acc_comp = acc_comp_int != 0;
        param_get(_params_handles.bias_max, &_bias_max);//陀螺仪偏差上限;
        param_get(_params_handles.vibe_thresh, &_vibration_warning_threshold);//振动警告阈值;
        param_get(_params_handles.ext_hdg_mode, &_ext_hdg_mode);
    }
}

init();

1、k 为导航坐标系(NED)的 z 轴(D)在机体坐标系中的表示;

导航系中,D正方向朝下;

2、i 为导航坐标系(NED)的 x 轴(N)在机体坐标系;

i = (_mag - k * (_mag * k)); //施密特正交化;


//因 向量 k 已归一化,故分母等于1;

3、为导航坐标系(NED)的 yy 轴(E)在机体坐标系;

j = k % i //叉乘求正交向量; 

4、构造旋转矩阵 R
R.set_row(0, i); R.set_row(1, j); R.set_row(2, k);


5、转换为四元数 qq ,根据设定校正磁偏,归一化;

l688~l728
bool AttitudeEstimatorQ::init()
{
    // Rotation matrix can be easily constructed from acceleration and mag field vectors
    // 'k' is Earth Z axis (Down) unit vector in body frame
    Vector<3> k = -_accel;
    k.normalize();

    // 'i' is Earth X axis (North) unit vector in body frame, orthogonal with 'k'
    Vector<3> i = (_mag - k * (_mag * k));
    i.normalize();

    // 'j' is Earth Y axis (East) unit vector in body frame, orthogonal with 'k' and 'i'
    Vector<3> j = k % i;

    // Fill rotation matrix
    Matrix<3, 3> R;
    R.set_row(0, i);
    R.set_row(1, j);
    R.set_row(2, k);

    // Convert to quaternion
    _q.from_dcm(R);

    // Compensate for magnetic declination
    Quaternion decl_rotation;
    decl_rotation.from_yaw(_mag_decl);
    _q = decl_rotation * _q;

    _q.normalize();

    if (PX4_ISFINITE(_q(0)) && PX4_ISFINITE(_q(1)) &&
        PX4_ISFINITE(_q(2)) && PX4_ISFINITE(_q(3)) &&
        _q.length() > 0.95f && _q.length() < 1.05f) {
        _inited = true;

    } else {
        _inited = false;
    }

    return _inited;
}

update();


1、init();//执行一次;

由加速度计和磁力计初始化旋转矩阵和四元数;

2、mag_earth = _q.conjugate(_mag);

不使用外部航向,或外部航向异常时,采用磁力计校准; 
将磁力计读数从机体坐标系转换到导航坐标系; 

3、mag_err = _wrap_pi(atan2f(mag_earth(1), mag_earth(0)) - _mag_decl);

将磁力计的读数由向量换算到角度; 该角度减去磁偏,得到磁场偏差; 
_mag_decl 由GPS得到; 
**atan2f: 2 表示两个输入参数; 支持四象限内角度换算; 输出弧度值; 
**_wrap_pi: 将(0~2pi)的角度映射到(-pi~pi);

4、corr += _q.conjugate_inversed(Vector<3>(0.0f, 0.0f, -mag_err)) * _w_mag;

将磁场偏差转换到机体坐标系,并乘以其对应权重; 
 

5、_q.normalize();

四元数归一化; 
这里的归一化用于校正update_mag_declination后的偏差。

corr += (k % (_accel - _pos_acc).normalized()) * _w_accel;

6、向量 k 是重力加速度向量(0,0,1)转换到机体坐标系; 
_accel 是加速度计的读数; 
_pos_acc 是由位置估计(GPS) 微分得到的加速度; 
_accel - _pos_acc 表示飞行器加速度向量减去其水平分量; 
k 与 (_accel - _pos_acc)叉乘,得到偏差; 

【算法基础学习 4】互补滤波算法——PX4姿态估计_第5张图片


7、_gyro_bias += corr * (_w_gyro_bias * dt);

得到陀螺仪修正值 
此处修正值为 mahony 滤波的 pi 控制器的 积分部分; 
因为 _gyro_bias 不归零,故不断累积; 

8、_rates = _gyro + _gyro_bias;

_rates 表示角速度; 


9、corr += _rates;

这里的 corr = (Ea+Em) + (Ea+Em)*dt + gyro; 
个人认为这里的 corr 才是更新后的角速度;

10、_q += _q.derivative(corr) * dt;

更新四元数,derivative为求导函数,使用一阶龙格库塔求导。 

l730~l817
bool AttitudeEstimatorQ::update(float dt)
{
    if (!_inited) {

        if (!_data_good) {
            return false;
        }

        return init();
    }

    Quaternion q_last = _q;//保存上一状态,以便恢复;

    // Angular rate of correction
    Vector<3> corr;//初始化元素为0;

    //_ext_hdg_good表示外部航向数据可用;
    if (_ext_hdg_mode > 0 && _ext_hdg_good) {
        if (_ext_hdg_mode == 1) {
            // Vision heading correction
            //视觉航向校正;
            // Project heading to global frame and extract XY component
            //将航向投影到导航坐标系,提取XY分量;
            Vector<3> vision_hdg_earth = _q.conjugate(_vision_hdg);
            float vision_hdg_err = _wrap_pi(atan2f(vision_hdg_earth(1), vision_hdg_earth(0)));
            // Project correction to body frame
            corr += _q.conjugate_inversed(Vector<3>(0.0f, 0.0f, -vision_hdg_err)) * _w_ext_hdg;
        }

        if (_ext_hdg_mode == 2) {
            // Mocap heading correction
            // Project heading to global frame and extract XY component
            Vector<3> mocap_hdg_earth = _q.conjugate(_mocap_hdg);
            float mocap_hdg_err = _wrap_pi(atan2f(mocap_hdg_earth(1), mocap_hdg_earth(0)));
            // Project correction to body frame
            corr += _q.conjugate_inversed(Vector<3>(0.0f, 0.0f, -mocap_hdg_err)) * _w_ext_hdg;
        }
    }

    if (_ext_hdg_mode == 0  || !_ext_hdg_good) {
        // Magnetometer correction
        // Project mag field vector to global frame and extract XY component
        Vector<3> mag_earth = _q.conjugate(_mag);
        float mag_err = _wrap_pi(atan2f(mag_earth(1), mag_earth(0)) - _mag_decl);
        // Project magnetometer correction to body frame
        corr += _q.conjugate_inversed(Vector<3>(0.0f, 0.0f, -mag_err)) * _w_mag;
    }

    _q.normalize();

    // Accelerometer correction
    // Project 'k' unit vector of earth frame to body frame
    // Vector<3> k = _q.conjugate_inversed(Vector<3>(0.0f, 0.0f, 1.0f));
    // Optimized version with dropped zeros
    Vector<3> k(
        2.0f * (_q(1) * _q(3) - _q(0) * _q(2)),
        2.0f * (_q(2) * _q(3) + _q(0) * _q(1)),
        (_q(0) * _q(0) - _q(1) * _q(1) - _q(2) * _q(2) + _q(3) * _q(3))
    );

    corr += (k % (_accel - _pos_acc).normalized()) * _w_accel;

    // Gyro bias estimation
    _gyro_bias += corr * (_w_gyro_bias * dt);

    for (int i = 0; i < 3; i++) {//陀螺仪最大偏差上限;
        _gyro_bias(i) = math::constrain(_gyro_bias(i), -_bias_max, _bias_max);
    }

    _rates = _gyro + _gyro_bias;

    // Feed forward gyro
    corr += _rates;

    // Apply correction to state
    _q += _q.derivative(corr) * dt;

    // Normalize quaternion
    _q.normalize();
    //判断四元数是否发散,若发散,则沿用之前的四元数;
    if (!(PX4_ISFINITE(_q(0)) && PX4_ISFINITE(_q(1)) &&
          PX4_ISFINITE(_q(2)) && PX4_ISFINITE(_q(3)))) {
        // Reset quaternion to last good state
        _q = q_last;
        _rates.zero();
        _gyro_bias.zero();
        return false;
    }

    return true;
}


update_mag_declination();

l819~l832
void AttitudeEstimatorQ::update_mag_declination(float new_declination)
{
    // Apply initial declination or trivial rotations without changing estimation
    //忽略微小旋转;
    if (!_inited || fabsf(new_declination - _mag_decl) < 0.0001f) {
        _mag_decl = new_declination;

    } else {
        // Immediately rotate current estimation to avoid gyro bias growth
        //磁偏超过一定值后,校正姿态;
        Quaternion decl_rotation;
        decl_rotation.from_yaw(new_declination - _mag_decl);
        //由磁偏角度转化为四元数;
        _q = decl_rotation * _q;
        //四元数相乘表示角度相加;
        _mag_decl = new_declination;
    }
}


attitude_estimator_q_main();

l834~l890
int attitude_estimator_q_main(int argc, char *argv[])
{//外部调用接口;
    if (argc < 2) {
        warnx("usage: attitude_estimator_q {start|stop|status}");
        return 1;
    }

    if (!strcmp(argv[1], "start")) {

        if (attitude_estimator_q::instance != nullptr) {
            warnx("already running");
            return 1;
        }
        //实例化,instance;
        attitude_estimator_q::instance = new AttitudeEstimatorQ;

        if (attitude_estimator_q::instance == nullptr) {
            warnx("alloc failed");
            return 1;
        }

        if (OK != attitude_estimator_q::instance->start()) {
            delete attitude_estimator_q::instance;
            attitude_estimator_q::instance = nullptr;
            warnx("start failed");
            return 1;
        }

        return 0;
    }

    if (!strcmp(argv[1], "stop")) {
        if (attitude_estimator_q::instance == nullptr) {
            warnx("not running");
            return 1;
        }
        //删除实例化对象,指针置空;
        delete attitude_estimator_q::instance;
        attitude_estimator_q::instance = nullptr;
        return 0;
    }
    //打印当前姿态信息;
    if (!strcmp(argv[1], "status")) {
        if (attitude_estimator_q::instance) {
            attitude_estimator_q::instance->print();
            warnx("running");
            return 0;

        } else {
            warnx("not running");
            return 1;
        }
    }

    warnx("unrecognized command");
    return 1;
}



原文:https://blog.csdn.net/luoshi006/article/details/51513580 
 

你可能感兴趣的:(PX4,数学基础)