- Spring Boot 示例项目:从零开始构建 Web 应用
梦落青云
JAVAspringbootjava
一、项目概述本文档将指导您通过一个示例项目,了解如何使用SpringBoot框架构建一个简单的Web应用程序。该项目涵盖了从数据模型定义到控制器、服务层以及数据访问层的完整开发流程,帮助您快速掌握SpringBoot的基本使用方法。二、项目结构1.项目模块本示例项目分为以下几个主要模块:数据模型模块:负责定义与数据库表对应的实体类,使用JPA注解进行映射。控制器模块:处理客户端的HTTP请求,调用
- 联想E470 双GPU笔记本部署私有AI模型方案
月光技术杂谈
大模型初探人工智能ChatGLM3联想E470Qwen-7BPhi-3-mini
背景:手上有一台联想E470的闲置笔记本,配置如下:(IntelHD620核显+NVIDIA920MX独显,i5-7200UCPU),想用它来部署并学习AI模型。考虑到电脑的性能限制,打算采用「量化模型+知识蒸馏」的低成本部署方案。一、硬件适配优化方案显存限制突破使用4-bit量化技术压缩模型,例如加载ChatGLM3-6B的INT4版本,显存需求可降至6GB310启用CPU-GPU混合推理(通过
- LLaMA系列大模型调研与整理-llama-alpaca-lora
AI大模型-大飞
llamaAI大模型AI职场和发展人工智能
文章目录LLaMA大模型及其衍生模型1.LLaMA2.stanford_alpaca3.ChatDoctor4.alpaca-lora5.Chinese-LLaMA-Alpaca6.BELLE大模型综述ASurveyofLargeLanguageModels关键词:大模型,LLaMA,Alpaca,Lora,Belle,模型训练,模型微调,指令微调最近尝试在领域数据进行生成式大模型的再训练和微调,
- deepseek和ChatGPT 4o比较
调皮的芋头
chatgpt人工智能
DeepSeek和ChatGPT4o在实现方式、评测效果和使用体验方面的详细比较:实现方式:DeepSeek:推理型大模型DeepSeek的核心是推理型大模型,与指令型大模型不同,它不需要用户提供详细的步骤指令,而是通过理解用户的真实需求和场景来提供答案。后训练+RL/RLHFDeepSeekR1等推理模型是在通用模型的基础上进行“特训”(后训练+SFT/RL/RLHF),使其不仅知道得多还用得好
- [论文笔记] Cost-Effective Hyperparameter Optimization for Large Language Model Generation 大型语言模型生成推理超参优化
心心喵
论文笔记论文阅读语言模型人工智能
成本效益高的大型语言模型生成推理的超参数优化https://openreview.net/pdf?id=DoGmh8A39OChiWang1,SusanXueqingLiu2,AhmedH.Awadallah11微软研究院,雷德蒙德2史蒂文斯理工学院摘要大型语言模型(LLMs)因其生成能力引发了广泛关注,催生了各种商业应用。使用这些模型的高成本驱使应用构建者在有限的推理预算下最大化生成的价值。本文
- 电力知识图谱与大模型的结合:从构建到行业应用的深度解析
Cc不爱吃洋葱
知识图谱人工智能自然语言处理大模型大语言模型LLM语言模型
随着大数据和人工智能技术的飞速发展,电力行业迎来了智能化转型的全新契机。电力知识图谱作为一种将数据转化为结构化知识的技术,正在赋能故障诊断、设备管理、运维优化等核心场景。而当知识图谱与大模型相结合,更能释放强大的知识推理和智能预测能力,为行业智慧化发展注入新动力。本文将从专业视角,深入探讨电力知识图谱的构建过程、大模型的融入方法,以及它们在实际应用中的落地场景。通过具体案例剖析与技术解读,帮助你了
- 采用分布式部署deepseek
慧香一格
AI学习分布式deepseek
分布式部署DeepSeek涉及使用多个计算节点来加速模型训练或提升推理效率。下面是一个基本的指南,帮助您了解如何进行分布式部署。1.环境准备硬件需求:确保您的集群环境中有足够的GPU资源,并且所有机器之间可以通过高速网络互联。软件依赖:安装必要的库和工具,如PyTorch、Transformers等。特别地,对于分布式训练,还需要安装torch.distributed或者类似的库支持,例如Horo
- 《OSI模型与TCP/IP模型:从理论到实践的全面解析》
夏の橘
HCIA学习之路计算机网络tcp/ip网络
引言在计算机网络中,OSI模型和TCP/IP模型是理解网络通信的核心框架。然而,许多人对两者的区别、联系及实际应用场景感到困惑。本文将通过分层对比和实例分析,帮助读者彻底掌握这两个模型的本质。一、OSI模型:七层理想化框架1.设计目标OSI(OpenSystemsInterconnection)模型由国际标准化组织(ISO)提出,目标是统一全球网络协议标准,实现不同厂商设备的互联互通。2.七层结构
- 51-31 CVPR’24 | VastGaussian,3D高斯大型场景重建
深圳季连AIgraphX
aiXpilot智驾大模型1自动驾驶智慧城市AIGC计算机视觉数据挖掘
2024年2月,清华大学、华为和中科院联合发布的VastGaussian模型,实现了基于3DGaussianSplatting进行大型场景高保真重建和实时渲染。Abstract现有基于NeRF大型场景重建方法,往往在视觉质量和渲染速度方面存在局限性。虽然最近3DGaussiansSpltting在小规模和以对象为中心的场景中效果很好,但由于视频内存有限、优化时间长、外观变化明显,将其扩展到大型场景
- 微服务之网关
qq_40784183
微服务负载均衡架构
1.网关的选择Zuul和SpringCloudGateway(其他没用过了)2.Zuul(NetflixZuul)与SpringCloudGateway对比性能方面Zuul:Zuul1.x是基于Servlet的同步阻塞模型,在处理高并发请求时性能相对较弱。每个请求都会占用一个线程,当并发量较大时,线程资源可能会成为瓶颈。不过,Zuul2.x版本在性能上有所改进,采用了异步非阻塞模型,能够更好地处理
- 随机梯度下降一定会收敛么?
AndrewHZ
人工智能深度学习算法
1.什么是随机梯度下降?随机梯度下降(StochasticGradientDescent,SGD)是一种用于最小化目标函数的迭代优化算法,在机器学习和深度学习领域应用广泛。2.随机梯度下降算法的基本原理1.基于梯度的优化基础该算法是基于梯度的优化算法,用于寻找函数的最优解,通常是最小化损失函数。在机器学习和深度学习中,模型通过调整参数来最小化损失函数,以达到最佳的预测性能。2.迭代更新参数从初始的
- 《Ollama 与 DeepSeek 整合应用入门指南》一、二、三章
Allen-Steven
ollamadeepseek
第一章:工具概述与核心价值1.1Ollama技术解析本地化部署优势:无需网络连接的数据隐私保护跨平台架构设计:支持Windows/macOS/Linux全平台模型管理引擎:自动化处理模型依赖与版本控制1.2DeepSeek模型特性多模态处理能力:文本生成、代码理解、数学推理中文优化架构:针对中文语料的特殊训练策略模型家族图谱:从1.3B到67B的参数规模选择1.3技术整合价值本地智能计算:企业数据
- 交换机三层转发原理(涵盖ARP,ICMP,IP协议)
一名嵌入式糕手
tcp/ip服务器linux
ARP(地址解析协议)ARP是一种将IP地址转换为MAC地址的协议,工作在OSI模型的链路层,ARP主要用于局域网中,当一个主机需要与同一网络中的另一台主机通信时,它首先会使用ARP来获取目标主机的MAC地址,ARP报文由源,目MAC,载荷组成,载荷包含源IP和目的IP,ARP请求是一个广播帧,目标主机收到报文后会解析载荷内容,如果目的IP与自身IP匹配,会返回ARP响应,为一个单播帧,为了提高效
- 【JAVA工程师从0开始学AI】,第四步:闭包与高阶函数——用Python的“魔法函数“重构Java思维
架构默片
JAVA工程师从0开始学AI人工智能javapython
副标题:当严谨的Java遇上"七十二变"的Python函数式编程历经变量战争、语法迷雾、函数对决,此刻我们将踏入Python最迷人的领域——函数式编程。当Java工程师还在用接口和匿名类实现回调时,Python的闭包已化身"智能机器人",带着"记忆传承"的能力自由穿梭于代码之间。这里没有类的枷锁,函数既是武器又是盾牌,高阶函数组合出的"代码万花筒",正是AI数据处理、模型训练的核心密码。本文将用J
- 《Stable Diffusion绘画完全指南:从入门到精通的Prompt设计艺术》-配套代码示例
Allen-Steven
SD创作实践python相关应用StableDiffusion绘画学习指南深度学习pytorch人工智能stablediffusionCheckpointprompt
第一章:模型加载与基础生成1.1基础模型加载fromdiffusersimportStableDiffusionPipelineimporttorch#加载SD1.5基础模型(FP32精度)pipe=StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5",torch_dtype=torch.float32).
- CSDN宣布C知道产品接入DeepSeek R1满血版大模型,文心一言、星火认知模型
周杰伦_Jay
大模型LLMs热点事件文心一言人工智能leetcode目标检测机器学习自然语言处理生成对抗网络
文章目录前言一、产品升级与模式革新二、技术整合与大模型应用三、深度思考模式的核心优势四、应用场景与用户受益五、未来发展与技术创新前言亲爱的家人们,创作很不容易,若对您有帮助的话,请点赞收藏加关注哦,您的关注是我持续创作的动力,谢谢大家!有问题请私信或联系邮箱:fn_kobe@163.com一、产品升级与模式革新CSDN宣布C知道产品接入DeepSeek大模型。通过植入“深度思考模式”,全面升级AI
- DeepSeek 实用集成,接入各类软件
安替-AnTi
deepseek集成软件实用
将DeepSeek大模型能力轻松接入各类软件。访问DeepSeek开放平台来获取您的APIkey。详细内容参考:点我应用程序QuantalogicQuantaLogic是一个ReAct(推理和行动)框架,用于构建高级AI代理
- 本地化部署AI知识库:基于Ollama+DeepSeek+AnythingLLM保姆级教程
elecfan2011
人工智能
前言在数据安全和隐私保护需求日益增长的今天,本地化部署AI知识库成为企业/开发者的首选方案。本文将手把手教你如何通过Ollama(模型管理工具)、DeepSeek-R1(国产开源大模型)和AnythingLLM(知识库管理平台),搭建一套完全本地运行的智能问答系统。全程无需联网,数据100%私有化!目录环境准备与工具安装部署DeepSeek-R1模型配置AnythingLLM知识库平台构建本地知识
- 腾讯云大模型知识引擎×DeepSeek赋能文旅
繁依Fanyi
python
腾讯云大模型知识引擎×DeepSeek赋能文旅——以合肥文旅为例的技术革新与实践路径一、技术底座:知识引擎与DeepSeek的融合逻辑腾讯云大模型知识引擎与DeepSeek模型的结合,本质上是**“知识库+检索增强生成(RAG)+实时联网能力”**的技术框架升级。通过三步调用API接口,开发者可快速搭建基于DeepSeek的文旅智能应用。其核心优势包括:动态知识更新:突破传统大模型预训练数据的时间
- DeepSeek大模型的发展的十问十答
科技互联人生
人工智能AIGCDeepseek
DeepSeek大模型是由杭州深度求索人工智能基础技术研究有限公司开发的一款基于Transformer架构的大型语言模型,具体介绍如下:1.架构基础Transformer架构:DeepSeek大模型基于Transformer架构,该架构由Google在2017年提出,以自注意力机制为核心,能够并行处理输入序列中的每个元素,从而大大提高模型的计算效率。DeepSeek在Transformer架构的基
- 【Python】使用SQLAlchemy操作Mysql数据库
m0_74824044
数据库pythonmysql
一、SQLAlchemy介绍SQLAlchemy是Python的SQL工具包和对象关系映射(ORM)库,它提供了全套的企业级持久性模型,用于高效、灵活且优雅地与关系型数据库进行交互。使用SQLAlchemy,你可以通过Python类来定义数据库表的结构,并通过这些类与数据库进行交互,而无需编写复杂的SQL语句。以下是SQLAlchemy的一些主要特点和功能:ORM(对象关系映射):SQLAlche
- 揭密 scaling laws
deardao
机器学习
ScalinglawsOpenAI在其早期的关于scalinglaws的论文[1]中提出了基础理论,但该文缺乏一些具体的求解过程,且未能在更大规模的模型上进行验证。与此同时,后续研究,例如DeepMind的ChinChilla[2]还提出了不同的结论。论文题目:UnravelingtheMysteryofScalingLaws:PartI论文地址:https://arxiv.org/abs/240
- Beyond Scaling Laws: Understanding Transformer Performance with Associative Memory
UnknownBody
LLMDailytransformer深度学习人工智能语言模型
本文是LLM系列文章,针对《BeyondScalingLaws:UnderstandingTransformerPerformancewithAssociativeMemory》的翻译。超越缩放定律:用联想记忆理解Transformer性能摘要1引言2相关工作3模型4新的能量函数5交叉熵损失6实验结果7结论摘要增大Transformer模型的大小并不总是能够提高性能。这种现象不能用经验缩放定律来解
- SQLAlchemy中常用的查询方法[示例学习]
铁松溜达py
数据库
SQLAlchemy是一个强大的PythonORM(对象关系映射)工具,它提供了多种方法来执行数据库查询操作。以下是SQLAlchemy中常用的查询方法的总结:session.query():使用session.query(Model)来创建一个查询对象,其中Model是你要查询的数据库模型类。filter():在查询对象上使用filter()方法可以添加过滤条件,例如filter(Model.c
- PyTorch `.pth` 转 ONNX:从模型训练到跨平台部署
MO__YE
人工智能
PyTorch.pth转ONNX:从模型训练到跨平台部署在深度学习里,模型的格式决定了它的可用性。如果你是PyTorch用户,你可能熟悉.pth文件,它用于存储训练好的模型。但当你想在不同的环境(如TensorRT、OpenVINO、ONNXRuntime)部署模型时,.pth可能并不适用。这时,ONNX(OpenNeuralNetworkExchange)就必不可少。本文目录:什么是.pth文件
- 什么是Scaling Laws(缩放定律);DeepSeek的Scaling Laws
ZhangJiQun&MXP
教学2024大模型以及算力2021论文人工智能自然语言处理神经网络语言模型深度学习
什么是ScalingLaws(缩放定律)ScalingLaws(缩放定律)在人工智能尤其是深度学习领域具有重要意义,以下是相关介绍及示例:定义与内涵ScalingLaws主要描述了深度学习模型在规模(如模型参数数量、训练数据量、计算资源等)不断扩大时,模型性能与这些规模因素之间的定量关系。它表明,在一定条件下,模型的性能会随着模型规模的增加而以某种可预测的方式提升,通常表现为模型的损失函数值随模型
- 智能算力中心万卡GPU集群架构深度解析
科技互联人生
科技数码人工智能人工智能gpu算力硬件架构
智能算力中心万卡GPU集群架构深度分析 自ChatGPT发布,科技界大模型竞赛如火如荼。数据成新生产要素,算力成新基础能源,大模型成新生产工具,“AI+”转型势不可挡。模型参数量突破万亿,对算力需求升级,超万卡集群成基建竞赛标配。超万卡集群缩短训练时间,加速迭代,助力市场趋势应对。在超万卡集群中,高效稳定地训练大模型面临双重挑战:确保集群算力最大化、网
- PyTorch `.pth` 转 ONNX:从模型训练到跨平台部署
MO__YE
pytorch人工智能python
PyTorch.pth转ONNX:从模型训练到跨平台部署在深度学习里,模型的格式决定了它的可用性。如果你是PyTorch用户,你可能熟悉.pth文件,它用于存储训练好的模型。但当你想在不同的环境(如TensorRT、OpenVINO、ONNXRuntime)部署模型时,.pth可能并不适用。这时,ONNX(OpenNeuralNetworkExchange)就必不可少。本文目录:什么是.pth文件
- 大模型工具大比拼:SGLang、Ollama、VLLM、LLaMA.cpp 如何选择?
X_taiyang18
人工智能
简介:在人工智能飞速发展的今天,大模型已经成为推动技术革新的核心力量。无论是智能客服、内容创作,还是科研辅助、代码生成,大模型的身影无处不在。然而,面对市场上琳琅满目的工具,如何挑选最适合自己的那一款?本文将深入对比SGLang、Ollama、VLLM和LLaMA.cpp四款热门大模型工具,帮助您找到最契合需求的解决方案!工具概览在开始之前,先简单了解一下这四款工具的特点:SGLang:性能卓越的
- UVM的基本教程
如筏喻者
UVM学习其他
文章目录一、基本介绍二、在实践中学习1.接口interface2.待测设计DUT3.传输数据包transaction4.序列sequence5.序列器sequencer6.驱动器driver7.监视器monitor8.代理agent9.记分板scoreboard10.仿真环境env11.测试用例test12.顶层top13.参考模型referencemode和直接编程接口(DPI)14.简单的ma
- log4j对象改变日志级别
3213213333332132
javalog4jlevellog4j对象名称日志级别
log4j对象改变日志级别可批量的改变所有级别,或是根据条件改变日志级别。
log4j配置文件:
log4j.rootLogger=ERROR,FILE,CONSOLE,EXECPTION
#log4j.appender.FILE=org.apache.log4j.RollingFileAppender
log4j.appender.FILE=org.apache.l
- elk+redis 搭建nginx日志分析平台
ronin47
elasticsearchkibanalogstash
elk+redis 搭建nginx日志分析平台
logstash,elasticsearch,kibana 怎么进行nginx的日志分析呢?首先,架构方面,nginx是有日志文件的,它的每个请求的状态等都有日志文件进行记录。其次,需要有个队 列,redis的l
- Yii2设置时区
dcj3sjt126com
PHPtimezoneyii2
时区这东西,在开发的时候,你说重要吧,也还好,毕竟没它也能正常运行,你说不重要吧,那就纠结了。特别是linux系统,都TMD差上几小时,你能不痛苦吗?win还好一点。有一些常规方法,是大家目前都在采用的1、php.ini中的设置,这个就不谈了,2、程序中公用文件里设置,date_default_timezone_set一下时区3、或者。。。自己写时间处理函数,在遇到时间的时候,用这个函数处理(比较
- js实现前台动态添加文本框,后台获取文本框内容
171815164
文本框
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://w
- 持续集成工具
g21121
持续集成
持续集成是什么?我们为什么需要持续集成?持续集成带来的好处是什么?什么样的项目需要持续集成?... 持续集成(Continuous integration ,简称CI),所谓集成可以理解为将互相依赖的工程或模块合并成一个能单独运行
- 数据结构哈希表(hash)总结
永夜-极光
数据结构
1.什么是hash
来源于百度百科:
Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入,通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
- 乱七八糟
程序员是怎么炼成的
eclipse中的jvm字节码查看插件地址:
http://andrei.gmxhome.de/eclipse/
安装该地址的outline 插件 后重启,打开window下的view下的bytecode视图
http://andrei.gmxhome.de/eclipse/
jvm博客:
http://yunshen0909.iteye.com/blog/2
- 职场人伤害了“上司” 怎样弥补
aijuans
职场
由于工作中的失误,或者平时不注意自己的言行“伤害”、“得罪”了自己的上司,怎么办呢?
在职业生涯中这种问题尽量不要发生。下面提供了一些解决问题的建议:
一、利用一些轻松的场合表示对他的尊重
即使是开明的上司也很注重自己的权威,都希望得到下属的尊重,所以当你与上司冲突后,最好让不愉快成为过去,你不妨在一些轻松的场合,比如会餐、联谊活动等,向上司问个好,敬下酒,表示你对对方的尊重,
- 深入浅出url编码
antonyup_2006
应用服务器浏览器servletweblogicIE
出处:http://blog.csdn.net/yzhz 杨争
http://blog.csdn.net/yzhz/archive/2007/07/03/1676796.aspx
一、问题:
编码问题是JAVA初学者在web开发过程中经常会遇到问题,网上也有大量相关的
- 建表后创建表的约束关系和增加表的字段
百合不是茶
标的约束关系增加表的字段
下面所有的操作都是在表建立后操作的,主要目的就是熟悉sql的约束,约束语句的万能公式
1,增加字段(student表中增加 姓名字段)
alter table 增加字段的表名 add 增加的字段名 增加字段的数据类型
alter table student add name varchar2(10);
&nb
- Uploadify 3.2 参数属性、事件、方法函数详解
bijian1013
JavaScriptuploadify
一.属性
属性名称
默认值
说明
auto
true
设置为true当选择文件后就直接上传了,为false需要点击上传按钮才上传。
buttonClass
”
按钮样式
buttonCursor
‘hand’
鼠标指针悬停在按钮上的样子
buttonImage
null
浏览按钮的图片的路
- 精通Oracle10编程SQL(16)使用LOB对象
bijian1013
oracle数据库plsql
/*
*使用LOB对象
*/
--LOB(Large Object)是专门用于处理大对象的一种数据类型,其所存放的数据长度可以达到4G字节
--CLOB/NCLOB用于存储大批量字符数据,BLOB用于存储大批量二进制数据,而BFILE则存储着指向OS文件的指针
/*
*综合实例
*/
--建立表空间
--#指定区尺寸为128k,如不指定,区尺寸默认为64k
CR
- 【Resin一】Resin服务器部署web应用
bit1129
resin
工作中,在Resin服务器上部署web应用,通常有如下三种方式:
配置多个web-app
配置多个http id
为每个应用配置一个propeties、xml以及sh脚本文件
配置多个web-app
在resin.xml中,可以为一个host配置多个web-app
<cluster id="app&q
- red5简介及基础知识
白糖_
基础
简介
Red5的主要功能和Macromedia公司的FMS类似,提供基于Flash的流媒体服务的一款基于Java的开源流媒体服务器。它由Java语言编写,使用RTMP作为流媒体传输协议,这与FMS完全兼容。它具有流化FLV、MP3文件,实时录制客户端流为FLV文件,共享对象,实时视频播放、Remoting等功能。用Red5替换FMS后,客户端不用更改可正
- angular.fromJson
boyitech
AngularJSAngularJS 官方APIAngularJS API
angular.fromJson 描述: 把Json字符串转为对象 使用方法: angular.fromJson(json); 参数详解: Param Type Details json
string
JSON 字符串 返回值: 对象, 数组, 字符串 或者是一个数字 示例:
<!DOCTYPE HTML>
<h
- java-颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I
bylijinnan
java
public class ReverseWords {
/**
* 题目:颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I.词以空格分隔。
* 要求:
* 1.实现速度最快,移动最少
* 2.不能使用String的方法如split,indexOf等等。
* 解答:两次翻转。
*/
publ
- web实时通讯
Chen.H
Web浏览器socket脚本
关于web实时通讯,做一些监控软件。
由web服务器组件从消息服务器订阅实时数据,并建立消息服务器到所述web服务器之间的连接,web浏览器利用从所述web服务器下载到web页面的客户端代理与web服务器组件之间的socket连接,建立web浏览器与web服务器之间的持久连接;利用所述客户端代理与web浏览器页面之间的信息交互实现页面本地更新,建立一条从消息服务器到web浏览器页面之间的消息通路
- [基因与生物]远古生物的基因可以嫁接到现代生物基因组中吗?
comsci
生物
大家仅仅把我说的事情当作一个IT行业的笑话来听吧..没有其它更多的意思
如果我们把大自然看成是一位伟大的程序员,专门为地球上的生态系统编制基因代码,并创造出各种不同的生物来,那么6500万年前的程序员开发的代码,是否兼容现代派的程序员的代码和架构呢?
- oracle 外部表
daizj
oracle外部表external tables
oracle外部表是只允许只读访问,不能进行DML操作,不能创建索引,可以对外部表进行的查询,连接,排序,创建视图和创建同义词操作。
you can select, join, or sort external table data. You can also create views and synonyms for external tables. Ho
- aop相关的概念及配置
daysinsun
AOP
切面(Aspect):
通常在目标方法执行前后需要执行的方法(如事务、日志、权限),这些方法我们封装到一个类里面,这个类就叫切面。
连接点(joinpoint)
spring里面的连接点指需要切入的方法,通常这个joinpoint可以作为一个参数传入到切面的方法里面(非常有用的一个东西)。
通知(Advice)
通知就是切面里面方法的具体实现,分为前置、后置、最终、异常环
- 初一上学期难记忆单词背诵第二课
dcj3sjt126com
englishword
middle 中间的,中级的
well 喔,那么;好吧
phone 电话,电话机
policeman 警察
ask 问
take 拿到;带到
address 地址
glad 高兴的,乐意的
why 为什么
China 中国
family 家庭
grandmother (外)祖母
grandfather (外)祖父
wife 妻子
husband 丈夫
da
- Linux日志分析常用命令
dcj3sjt126com
linuxlog
1.查看文件内容
cat
-n 显示行号 2.分页显示
more
Enter 显示下一行
空格 显示下一页
F 显示下一屏
B 显示上一屏
less
/get 查询"get"字符串并高亮显示 3.显示文件尾
tail
-f 不退出持续显示
-n 显示文件最后n行 4.显示头文件
head
-n 显示文件开始n行 5.内容排序
sort
-n 按照
- JSONP 原理分析
fantasy2005
JavaScriptjsonpjsonp 跨域
转自 http://www.nowamagic.net/librarys/veda/detail/224
JavaScript是一种在Web开发中经常使用的前端动态脚本技术。在JavaScript中,有一个很重要的安全性限制,被称为“Same-Origin Policy”(同源策略)。这一策略对于JavaScript代码能够访问的页面内容做了很重要的限制,即JavaScript只能访问与包含它的
- 使用connect by进行级联查询
234390216
oracle查询父子Connect by级联
使用connect by进行级联查询
connect by可以用于级联查询,常用于对具有树状结构的记录查询某一节点的所有子孙节点或所有祖辈节点。
来看一个示例,现假设我们拥有一个菜单表t_menu,其中只有三个字段:
- 一个不错的能将HTML表格导出为excel,pdf等的jquery插件
jackyrong
jquery插件
发现一个老外写的不错的jquery插件,可以实现将HTML
表格导出为excel,pdf等格式,
地址在:
https://github.com/kayalshri/
下面看个例子,实现导出表格到excel,pdf
<html>
<head>
<title>Export html table to excel an
- UI设计中我们为什么需要设计动效
lampcy
UIUI设计
关于Unity3D中的Shader的知识
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,
- 如何禁止页面缓存
nannan408
htmljspcache
禁止页面使用缓存~
------------------------------------------------
jsp:页面no cache:
response.setHeader("Pragma","No-cache");
response.setHeader("Cache-Control","no-cach
- 以代码的方式管理quartz定时任务的暂停、重启、删除、添加等
Everyday都不同
定时任务管理spring-quartz
【前言】在项目的管理功能中,对定时任务的管理有时会很常见。因为我们不能指望只在配置文件中配置好定时任务就行了,因为如果要控制定时任务的 “暂停” 呢?暂停之后又要在某个时间点 “重启” 该定时任务呢?或者说直接 “删除” 该定时任务呢?要改变某定时任务的触发时间呢? “添加” 一个定时任务对于系统的使用者而言,是不太现实的,因为一个定时任务的处理逻辑他是不
- EXT实例
tntxia
ext
(1) 增加一个按钮
JSP:
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<%
String path = request.getContextPath();
Stri
- 数学学习在计算机研究领域的作用和重要性
xjnine
Math
最近一直有师弟师妹和朋友问我数学和研究的关系,研一要去学什么数学课。毕竟在清华,衡量一个研究生最重要的指标之一就是paper,而没有数学,是肯定上不了世界顶级的期刊和会议的,这在计算机学界尤其重要!你会发现,不论哪个领域有价值的东西,都一定离不开数学!在这样一个信息时代,当google已经让世界没有秘密的时候,一种卓越的数学思维,绝对可以成为你的核心竞争力. 无奈本人实在见地