VGGNet理解

VGGNet

VGG论文给出了一个非常振奋人心的结论:卷积神经网络的深度增加和小卷积核的使用对网络的最终分类识别效果有很大的作用。
VGGNet理解_第1张图片
VGGNet理解_第2张图片
Q1: 为什么3个3x3的卷积可以代替7x7的卷积?

3个3x3的卷积,使用了3个非线性激活函数,增加了非线性表达能力,使得分割平面更具有可分性
减少参数个数。对于C个通道的卷积核,7x7含有参数77cc, 3个3x3的参数个数为3∗33cc,参数大大减少。两个3x3的卷积层叠加,等价于一个5x5的卷积核的效果,3个3x3的卷积核的叠加相当于一个7x7的卷积核,而且参数更少.大约是7x7卷积核卷积层的(3*3*3)/(7*7)=0.55.而且拥有和7x7卷积核一样的感受视野,三个卷积层的叠加,经过了更多次的非线性变换,对特征的学习能力更强.
Q2: 1x1卷积核的作用

在不影响感受野的情况下,增加模型的非线性性
1x1卷积相当于线性变换,非线性激活函数起到非线性作用
Q3: 网络深度对结果的影响(同年google也独立发布了深度为22层的网络GoogleNet)

VGG与GoogleNet模型都很深
都采用了小卷积
VGG只采用3x3,而GoogleNet采用1x1, 3x3, 5x5,模型更加复杂(模型开始采用了很大的卷积核,来降低后面卷机层的计算)

你可能感兴趣的:(cv)