用VGG_16网络模型训练并测试自己的数据库(超级详细的教程)

  • 网络结构:VGG-16
  • 数据库:cats_vs_dogs
  • 硬件:Nvida Quadro p2000 5GB
  • 深度学习框架:Tensorflow

文章目录

  • step1: Get File
  • step2: Transform To TFRecord
  • step3: Read TFRecord
  • stpe4: VGG_16 Model
  • step5: Train

step1: Get File

找到已经下载到电脑上的数据集

def get_file(file_dir):
	print('searching images...')
	images = []
	temp = [] # 临时list
	labels = []

	# for root,sub_folders,files in os.walk(file_dir):
	# 	for  name in files:
	# 		if name.endswith('.jpg'):
	# 			images.append(os.path.join(root,name))
	# 		if name in sub_folders:
	# 			temp.append(os.path.join(root,name)) #存放文件路径

	# 	for one_folder in temp:
	# 		n_img = len(os.listdir(one_folder))
	# 		print('number of files:',n_img)
	# 		class_name = one_folder.split('\\')[-1] # 文件名即为分类名称
	# 		if class_name == 'cats':
	# 			labels = np.append(labels,n_img*[1])
	# 		elif class_name == 'dogs':
	# 			labels = np.append(labels,n_img*[2])
	
	cats_path = file_dir + '/cats'
	dogs_path = file_dir + '/dogs'
	for filename in os.listdir(cats_path):
		images.append(os.path.join(cats_path,filename))
		labels.append(1)
	# print(len(images))
	for filename in os.listdir(dogs_path):
		images.append(os.path.join(dogs_path,filename))
		labels.append(2)
	# print(len(images))
	temp = np.array([images,
					labels])  # [2,total_n_img]
	temp = temp.transpose()  # 转置
	np.random.shuffle(temp)  # shuffle
	image_list = list(temp[:,0])
	label_list = list(temp[:,1])
	label_list = [int(float(i)) for i in label_list]
	
	'''
	# 将所有的list分为两部分,一部分用来训练tra,一部分用来验证val
	n_sample = len(image_list)
	n_val = int(math.ceil(n_sample * ratio))
	n_train = n_sample - n_val

	tra_images = image_list[0:n_train]
	tra_labels = label_list[0:n_train]
	tra_labels = [int(flaot(i)) for i in tra_labels]

	val_images = image_list[n_train:-1]
	val_labels = label_list[n_train:-1]
	val_labels = [int(flaot(i)) for i in val_labels]
	
	return tra_images,tra_labels,val_images,val_labels
	'''

	return image_list,label_list

测试代码

image_list,label_list = get_file(img_path)

print('number of image:',len(image_list))
print('number of label:',len(label_list))
# 来10张图片测试一下image和label是否一一对应
for i in range(10):
	image = Image.open(image_list[i])
	plt.subplot()
	plt.title(label_list[i])
	plt.imshow(image)
	plt.show()

测试结果
用VGG_16网络模型训练并测试自己的数据库(超级详细的教程)_第1张图片
用VGG_16网络模型训练并测试自己的数据库(超级详细的教程)_第2张图片
No Problem!

step2: Transform To TFRecord

将img转化为TFRecord文件

def _int64_feature(value):
	return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))

def _bytes_feature(value):
	return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

def convet_to_tfrecord(images,labels,save_dir,name,image_size):
	filename = os.path.join(save_dir,name+'.tfrecords')

	if tf.gfile.Exists(filename):
		print('\n%s already exist!\n' % filename)
		return 
	n_samples = len(labels)
	if np.shape(images)[0] != n_samples:
		raise ValueError('Image size %d dose not match labels size %d.' % 
						(images.size(),labels.size()))
 	
	writer = tf.python_io.TFRecordWriter(filename)
	print('\nTransform start...')
	m=n=0
	for i in np.arange(0,n_samples):
		try:
			m += 1
			image = Image.open(images[i])
			image = image.resize(image_size)
			image_raw = image.tobytes()
			label = int(labels[i])
			example = tf.train.Example(features=tf.train.Features(feature={
				'image_raw':_bytes_feature(image_raw),
				'label':_int64_feature(label)	
				}))
			writer.write(example.SerializeToString())
			print('Num of successful:',m)
		except IOError as e:
			n += 1
			print('Could not read:',images[i])
			print('Error type:',e)
			print('Skip it !\n')
	writer.close()	
	print('Transform done !')
	print('Transformed : %d\t failed : %d\n' % (m,n))
	return filename

测试代码

tfrecords_file_path = convet_to_tfrecord(image_list,
										label_list,
										save_dir=save_dir,
										name=tfrecords_name,
										image_size=image_size)
print(tfrecords_file_path)

结果:打印出.tfrecords文件的路径及名称

  • 注:这里我用的是整个cats_vs_dogs数据集,一共25000张图片(接近600M)。存入.tfrecords文件的图片大小是224x224. 整个.tfrecords文件相当大(3.5GB)。
  • 用VGG_16网络模型训练并测试自己的数据库(超级详细的教程)_第3张图片

step3: Read TFRecord

读取TFRecord文件

def read_and_decode(tfrecords_file,batch_size,image_size):
	filename_queue = tf.train.string_input_producer([tfrecords_file])
	reader = tf.TFRecordReader()
	_,serialized_example = reader.read(filename_queue)
	img_feature = tf.parse_single_example(serialized_example,
											features={
											'image_raw':tf.FixedLenFeature([],tf.string),
											'label':tf.FixedLenFeature([],tf.int64)
											})
	image = tf.decode_raw(img_feature['image_raw'],tf.uint8)
	image = tf.reshape(image,[image_size[0],image_size[1],3])
	label = tf.cast(img_feature['label'],tf.int32)
	image_batch, label_batch = tf.train.batch([image,label],
												batch_size=batch_size,
												num_threads=64,
												capacity=2000)
	return image_batch,tf.reshape(label_batch,[batch_size])

测试代码

image_batch,label_batch = read_and_decode(tfrecords_file_path,
										batch_size=batch_size,
										image_size=image_size)
print('image shape:',image_batch.shape)
print('label shape:',label_batch.shape)

测试结果
在这里插入图片描述

stpe4: VGG_16 Model

构建VGG-16网络结构模型,这部分没什么好说的,网上版本多的是,大同小异。

import tensorflow as tf

def conv_op(input_op,name,kh,kw,n_out,dh,dw,p):
	n_in = input_op.get_shape()[-1].value

	with tf.name_scope(name) as scope:
		kernel = tf.get_variable(scope+'w',
								shape=[kh,kw,n_in,n_out],
								dtype=tf.float32,
								initializer=tf.contrib.layers.xavier_initializer_conv2d())
		conv = tf.nn.conv2d(input_op,kernel,[1,dh,dw,1],padding='SAME')
		bias_init_val = tf.constant(0.0,shape=[n_out],dtype=tf.float32)
		biases = tf.Variable(bias_init_val,trainable=True,name='b')
		z = tf.nn.bias_add(conv,biases)
		activation = tf.nn.relu(z,name=scope)
		p += [kernel,biases]
	return activation

def fc_op(input_op,name,n_out,p):
	n_in = input_op.get_shape()[-1].value

	with tf.name_scope(name) as scope:
		kernel = tf.get_variable(scope+'w',
								shape=[n_in,n_out],
								dtype=tf.float32,
								initializer=tf.contrib.layers.xavier_initializer())
		biases = tf.Variable(tf.constant(0.0,shape=[n_out],dtype=tf.float32),name='b')
		activation = tf.nn.relu_layer(input_op,kernel,biases,name=scope)
		p += [kernel,biases]
		return activation

def mpool_op(input_op,name,kh,kw,dh,dw):
	return tf.nn.max_pool(input_op,
							ksize=[1,kh,kw,1],
							strides=[1,dh,dw,1],
							padding='SAME',
							name=name)

def inference_op(input_op,keep_prob):
	p=[]
	conv1_1 = conv_op(input_op, name='conv1_1', kh=3, kw=3, n_out=64, dh=1, dw=1, p=p)
	conv1_2 = conv_op(conv1_1,  name='conv1_2', kh=3, kw=3, n_out=64, dh=1, dw=1, p=p)
	pool1 = mpool_op(conv1_2,   name='pool1',   kh=2, kw=2, dh=2, dw=2)

	conv2_1 = conv_op(pool1, 	name='conv2_1', kh=3, kw=3, n_out=128, dh=1, dw=1, p=p)
	conv2_2 = conv_op(conv2_1,  name='conv2_2', kh=3, kw=3, n_out=128, dh=1, dw=1, p=p)
	pool2 = mpool_op(conv2_2,   name='pool2',   kh=2, kw=2, dh=2, dw=2)

	conv3_1 = conv_op(pool2, 	name='conv3_1', kh=3, kw=3, n_out=256, dh=1, dw=1, p=p)
	conv3_2 = conv_op(conv3_1,  name='conv3_2', kh=3, kw=3, n_out=256, dh=1, dw=1, p=p)
	conv3_3 = conv_op(conv3_2,  name='conv3_3', kh=3, kw=3, n_out=256, dh=1, dw=1, p=p)
	pool3 = mpool_op(conv3_3,   name='pool3',   kh=2, kw=2, dh=2, dw=2)

	conv4_1 = conv_op(pool3, 	name='conv4_1', kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
	conv4_2 = conv_op(conv4_1,  name='conv4_2', kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
	conv4_3 = conv_op(conv4_2,  name='conv4_3', kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
	pool4 = mpool_op(conv4_3,   name='pool4',   kh=2, kw=2, dh=2, dw=2)

	conv5_1 = conv_op(pool4, 	name='conv5_1', kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
	conv5_2 = conv_op(conv5_1,  name='conv5_2', kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
	conv5_3 = conv_op(conv5_2,  name='conv5_3', kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
	pool5 = mpool_op(conv5_3,   name='pool5',   kh=2, kw=2, dh=2, dw=2)

	shp = pool5.get_shape()
	flattened_shape = shp[1].value * shp[2].value * shp[3].value
	reshl = tf.reshape(pool5,[-1,flattened_shape],name='reshl')

	fc6 = fc_op(reshl,name='fc6',n_out=4096,p=p)
	fc6_drop = tf.nn.dropout(fc6,keep_prob,name='fc6_drop')

	fc7 = fc_op(fc6_drop,name='fc7',n_out=4096,p=p)
	fc7_drop = tf.nn.dropout(fc7,keep_prob,name='fc7_drop')

	fc8 = fc_op(fc7_drop,name='fc8',n_out=1000,p=p)

	softmax = tf.nn.softmax(fc8)

	return softmax

def losses(logits,labels): # logits:网络计算输出值,labels:真实值,0,1
	with tf.variable_scope('loss') as scope:
		cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
																		labels=labels,
																		name='x_entropy_per_example')
		loss = tf.reduce_mean(cross_entropy,name='loss')
		tf.summary.scalar(scope.name + '/loss',loss)
	return loss

def training(loss,learning_rate):
	with tf.name_scope('optimizer'):
		optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
		global_step = tf.Variable(0,name='global_step',trainable=False)
		train_op = optimizer.minimize(loss,global_step=global_step)
	return train_op # 返回参数:train_op,训练op,这个参数要输入sess.run中让模型去训练。

def evaluation(logits,labels):
	with tf.variable_scope('accuracy') as scope:
		correct = tf.nn.in_top_k(logits,labels,1)
		accuracy = tf.reduce_mean(tf.cast(correct,tf.float16))
		tf.summary.scalar(scope.name + '/accuracy',accuracy)
	return accuracy

# tensorboard
def variable_summary(var,name):
	with tf.name_scope(name):
		mean = tf.reduce_mean(var)
		with tf.name_scope('stddev'):
			stddev = tf.sqrt(tf.reduce_mean(tf.square(var-mean)))
		tf.summary.scalar('mean',mean)
		tf.summary.scalar('stddev',stddev)
		tf.summary.scalar('min',tf.reduce_min(var))
		tf.summary.scalar('max',tf.reduce_max(var))
		tf.summary.histogram('histogram',var)
		# histogram:打印直方图,反应变量分布

step5: Train

import tensorflow as tf
from vgg_16 import *
from imgPreprocess import read_and_decode
import numpy as np
from datetime import datetime
import time

IMAGE_SIZE = (224,224)
batch_size = 10 # 每个batch放多少张img   batch过大内存会不够用
num_batch = 100 # 产生的批次数

learning_rate = 0.0001 # 一般不小于
keep_prob = 0.8

tfrecords_file = './data/train.tfrecords' # tfrecords数据文件名(在目标文件目录下)
saver_path = './model/model.ckpt' # 模型保存路径
logs_trian_dir = './logs'
image_batch,label_batch = read_and_decode(tfrecords_file,
											batch_size,
											image_size=IMAGE_SIZE)


# 训练操作定义
image_batch = tf.cast(image_batch,tf.float32) # 需要将image_batch dtype转换成tf.float32 不然会报错
train_logits = inference_op(image_batch,keep_prob)
train_loss = losses(train_logits,label_batch)
train_op = training(train_loss,learning_rate)
trian_acc = evaluation(train_logits,label_batch)

# log汇总记录
summary_op = tf.summary.merge_all()

# 产生一个会话
sess = tf.Session()
train_writer = tf.summary.FileWriter(logs_trian_dir,sess.graph)
saver = tf.train.Saver()
# 节点初始化
sess.run(tf.global_variables_initializer())
#队列监控
coord = tf.train.Coordinator() #设置多线程协调器
threads = tf.train.start_queue_runners(sess=sess,coord=coord)

# 进行batch训练
try:
	for step in np.arange(num_batch):
		if coord.should_stop():
			break
		start_time = time.time()
		_,tra_loss,tra_acc = sess.run([train_op,train_loss,trian_acc])
		duration = time.time() - start_time
		# 每隔10步打印一次当前的loss , acc ,同时记录log,写入writer
		if step % 10 == 0:

			print('%s Step %d, trian loss = %.2f, train accuracy = %.2f%%, duration = %s' %
				(datetime.now(),step,tra_loss,tra_acc*100.0,duration))
			summary_str = sess.run(summary_op)
			train_writer.add_summary(summary_str,step)

		# 保存最后一次网络参数
		saver.save(sess,saver_path)

		'''
		# 每隔10步,保存一次训练好的模型
		if(step+1) == num_batch:
			saver.save(sess,saver_path)
		'''
except tf.errors.OutOfRangeError:
	print('Done Training -- epoch limit reached')

finally:
	coord.request_stop()
coord.join(threads)
sess.close()

运行结果
IMAGE_SIZE = (224,224)
batch_size = 10
num_batch = 100
可以看到:耗时非常长(大约21min)
另外:为什么运行到第10个周期之后 acc 就达到了100%
用VGG_16网络模型训练并测试自己的数据库(超级详细的教程)_第4张图片

  • 我们来看一下生成的文件
    ./logs目录下
    用VGG_16网络模型训练并测试自己的数据库(超级详细的教程)_第5张图片
    ./model目录下
    用VGG_16网络模型训练并测试自己的数据库(超级详细的教程)_第6张图片
  • Now ! 让我们来调出强大Tensorboard,看一下训练过程究竟发生了什么
    • win + R
    • 输入cmd
    • 输入下图所示命令
      用VGG_16网络模型训练并测试自己的数据库(超级详细的教程)_第7张图片
      用VGG_16网络模型训练并测试自己的数据库(超级详细的教程)_第8张图片
    • 打开浏览器 Ctrl + V 就会看到熟悉的界面
      用VGG_16网络模型训练并测试自己的数据库(超级详细的教程)_第9张图片
      Graph
      用VGG_16网络模型训练并测试自己的数据库(超级详细的教程)_第10张图片

你可能感兴趣的:(卷积神经网络)