ResNet v1: Deep Residual Learning for Image Recognition
ResNet v2: Identity Mappings in Deep Residual Networks
Model | n | 200-epoch accuracy | Original paper accuracy | sec/epoch GTX1080Ti |
---|---|---|---|---|
ResNet20 v1 | 3 | 92.16 % | 91.25 % | 35 |
ResNet32 v1 | 5 | 92.46 % | 92.49 % | 50 |
ResNet44 v1 | 7 | 92.50 % | 92.83 % | 70 |
ResNet56 v1 | 9 | 92.71 % | 93.03 % | 90 |
ResNet110 v1 | 18 | 92.65 % | 93.39±.16 % | 165 |
ResNet164 v1 | 27 | - % | 94.07 % | - |
ResNet1001 v1 | N/A | - % | 92.39 % | - |
Model | n | 200-epoch accuracy | Original paper accuracy | sec/epoch GTX1080Ti |
---|---|---|---|---|
ResNet20 v2 | 2 | - % | - % | — |
ResNet32 v2 | N/A | NA % | NA % | NA |
ResNet44 v2 | N/A | NA % | NA % | NA |
ResNet56 v2 | 6 | 93.01 % | NA % | 100 |
ResNet110 v2 | 12 | 93.15 % | 93.63 % | 180 |
ResNet164 v2 | 18 | - % | 94.54 % | - |
ResNet1001 v2 | 111 | - % | 95.08±.14 % | - |
from __future__ import print_function
import keras
from keras.layers import Dense, Conv2D, BatchNormalization, Activation
from keras.layers import AveragePooling2D, Input, Flatten
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras.callbacks import ReduceLROnPlateau
from keras.preprocessing.image import ImageDataGenerator
from keras.regularizers import l2
from keras import backend as K
from keras.models import Model
from keras.datasets import cifar10
import numpy as np
import os
def lr_schedule(epoch):
"""Learning Rate Schedule
Learning rate is scheduled to be reduced after 80, 120, 160, 180 epochs.
Called automatically every epoch as part of callbacks during training.
# Arguments
epoch (int): The number of epochs
# Returns
lr (float32): learning rate
"""
lr = 1e-3
if epoch > 180:
lr *= 0.5e-3
elif epoch > 160:
lr *= 1e-3
elif epoch > 120:
lr *= 1e-2
elif epoch > 80:
lr *= 1e-1
print('Learning rate: ', lr)
return lr
def resnet_layer(inputs,
num_filters=16,
kernel_size=3,
strides=1,
activation='relu',
batch_normalization=True,
conv_first=True):
"""2D Convolution-Batch Normalization-Activation stack builder
# Arguments
inputs (tensor): input tensor from input image or previous layer
num_filters (int): Conv2D number of filters
kernel_size (int): Conv2D square kernel dimensions
strides (int): Conv2D square stride dimensions
activation (string): activation name
batch_normalization (bool): whether to include batch normalization
conv_first (bool): conv-bn-activation (True) or
bn-activation-conv (False)
# Returns
x (tensor): tensor as input to the next layer
"""
conv = Conv2D(num_filters,
kernel_size=kernel_size,
strides=strides,
padding='same',
kernel_initializer='he_normal',
kernel_regularizer=l2(1e-4))
x = inputs
if conv_first:
x = conv(x)
if batch_normalization:
x = BatchNormalization()(x)
if activation is not None:
x = Activation(activation)(x)
else:
if batch_normalization:
x = BatchNormalization()(x)
if activation is not None:
x = Activation(activation)(x)
x = conv(x)
return x
def resnet_v1(input_shape, depth, num_classes=10):
"""ResNet Version 1 Model builder [a]
Stacks of 2 x (3 x 3) Conv2D-BN-ReLU
Last ReLU is after the shortcut connection.
At the beginning of each stage, the feature map size is halved (downsampled)
by a convolutional layer with strides=2, while the number of filters is
doubled. Within each stage, the layers have the same number filters and the
same number of filters.
Features maps sizes:
stage 0: 32x32, 16
stage 1: 16x16, 32
stage 2: 8x8, 64
The Number of parameters is approx the same as Table 6 of [a]:
ResNet20 0.27M
ResNet32 0.46M
ResNet44 0.66M
ResNet56 0.85M
ResNet110 1.7M
# Arguments
input_shape (tensor): shape of input image tensor
depth (int): number of core convolutional layers
num_classes (int): number of classes (CIFAR10 has 10)
# Returns
model (Model): Keras model instance
"""
if (depth - 2) % 6 != 0:
raise ValueError('depth should be 6n+2 (eg 20, 32, 44 in [a])')
# Start model definition.
num_filters = 16
num_res_blocks = int((depth - 2) / 6)
inputs = Input(shape=input_shape)
x = resnet_layer(inputs=inputs)
# Instantiate the stack of residual units
for stack in range(3):
for res_block in range(num_res_blocks):
strides = 1
if stack > 0 and res_block == 0: # first layer but not first stack
strides = 2 # downsample
y = resnet_layer(inputs=x,
num_filters=num_filters,
strides=strides)
y = resnet_layer(inputs=y,
num_filters=num_filters,
activation=None)
if stack > 0 and res_block == 0: # first layer but not first stack
# linear projection residual shortcut connection to match
# changed dims
x = resnet_layer(inputs=x,
num_filters=num_filters,
kernel_size=1,
strides=strides,
activation=None,
batch_normalization=False)
x = keras.layers.add([x, y])
x = Activation('relu')(x)
num_filters *= 2
# Add classifier on top.
# v1 does not use BN after last shortcut connection-ReLU
x = AveragePooling2D(pool_size=8)(x)
y = Flatten()(x)
outputs = Dense(num_classes,
activation='softmax',
kernel_initializer='he_normal')(y)
# Instantiate model.
model = Model(inputs=inputs, outputs=outputs)
return model
def resnet_v2(input_shape, depth, num_classes=10):
"""ResNet Version 2 Model builder [b]
Stacks of (1 x 1)-(3 x 3)-(1 x 1) BN-ReLU-Conv2D or also known as
bottleneck layer
First shortcut connection per layer is 1 x 1 Conv2D.
Second and onwards shortcut connection is identity.
At the beginning of each stage, the feature map size is halved (downsampled)
by a convolutional layer with strides=2, while the number of filter maps is
doubled. Within each stage, the layers have the same number filters and the
same filter map sizes.
Features maps sizes:
conv1 : 32x32, 16
stage 0: 32x32, 64
stage 1: 16x16, 128
stage 2: 8x8, 256
# Arguments
input_shape (tensor): shape of input image tensor
depth (int): number of core convolutional layers
num_classes (int): number of classes (CIFAR10 has 10)
# Returns
model (Model): Keras model instance
"""
if (depth - 2) % 9 != 0:
raise ValueError('depth should be 9n+2 (eg 56 or 110 in [b])')
# Start model definition.
num_filters_in = 16
num_res_blocks = int((depth - 2) / 9)
inputs = Input(shape=input_shape)
# v2 performs Conv2D with BN-ReLU on input before splitting into 2 paths
x = resnet_layer(inputs=inputs,
num_filters=num_filters_in,
conv_first=True)
# Instantiate the stack of residual units
for stage in range(3):
for res_block in range(num_res_blocks):
activation = 'relu'
batch_normalization = True
strides = 1
if stage == 0:
num_filters_out = num_filters_in * 4
if res_block == 0: # first layer and first stage
activation = None
batch_normalization = False
else:
num_filters_out = num_filters_in * 2
if res_block == 0: # first layer but not first stage
strides = 2 # downsample
# bottleneck residual unit
y = resnet_layer(inputs=x,
num_filters=num_filters_in,
kernel_size=1,
strides=strides,
activation=activation,
batch_normalization=batch_normalization,
conv_first=False)
y = resnet_layer(inputs=y,
num_filters=num_filters_in,
conv_first=False)
y = resnet_layer(inputs=y,
num_filters=num_filters_out,
kernel_size=1,
conv_first=False)
if res_block == 0:
# linear projection residual shortcut connection to match
# changed dims
x = resnet_layer(inputs=x,
num_filters=num_filters_out,
kernel_size=1,
strides=strides,
activation=None,
batch_normalization=False)
x = keras.layers.add([x, y])
num_filters_in = num_filters_out
# Add classifier on top.
# v2 has BN-ReLU before Pooling
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = AveragePooling2D(pool_size=8)(x)
y = Flatten()(x)
outputs = Dense(num_classes,
activation='softmax',
kernel_initializer='he_normal')(y)
# Instantiate model.
model = Model(inputs=inputs, outputs=outputs)
return model
# Training parameters
batch_size = 32 # orig paper trained all networks with batch_size=128
epochs = 200
data_augmentation = True
num_classes = 10
# Subtracting pixel mean improves accuracy
subtract_pixel_mean = True
# Model parameter
# ----------------------------------------------------------------------------
# | | 200-epoch | Orig Paper| 200-epoch | Orig Paper| sec/epoch
# Model | n | ResNet v1 | ResNet v1 | ResNet v2 | ResNet v2 | GTX1080Ti
# |v1(v2)| %Accuracy | %Accuracy | %Accuracy | %Accuracy | v1 (v2)
# ----------------------------------------------------------------------------
# ResNet20 | 3 (2)| 92.16 | 91.25 | ----- | ----- | 35 (---)
# ResNet32 | 5(NA)| 92.46 | 92.49 | NA | NA | 50 ( NA)
# ResNet44 | 7(NA)| 92.50 | 92.83 | NA | NA | 70 ( NA)
# ResNet56 | 9 (6)| 92.71 | 93.03 | 93.01 | NA | 90 (100)
# ResNet110 |18(12)| 92.65 | 93.39+-.16| 93.15 | 93.63 | 165(180)
# ResNet164 |27(18)| ----- | 94.07 | ----- | 94.54 | ---(---)
# ResNet1001| (111)| ----- | 92.39 | ----- | 95.08+-.14| ---(---)
# ---------------------------------------------------------------------------
n = 3
# Model version
# Orig paper: version = 1 (ResNet v1), Improved ResNet: version = 2 (ResNet v2)
version = 1
# Computed depth from supplied model parameter n
if version == 1:
depth = n * 6 + 2
elif version == 2:
depth = n * 9 + 2
# Model name, depth and version
model_type = 'ResNet%dv%d' % (depth, version)
# Load the CIFAR10 data.
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
# Input image dimensions.
input_shape = x_train.shape[1:]
# Normalize data.
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
# If subtract pixel mean is enabled
if subtract_pixel_mean:
x_train_mean = np.mean(x_train, axis=0)
x_train -= x_train_mean
x_test -= x_train_mean
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
print('y_train shape:', y_train.shape)
# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
if version == 2:
model = resnet_v2(input_shape=input_shape, depth=depth)
else:
model = resnet_v1(input_shape=input_shape, depth=depth)
model.compile(loss='categorical_crossentropy',
optimizer=Adam(lr=lr_schedule(0)),
metrics=['accuracy'])
model.summary()
print(model_type)
# Prepare model model saving directory.
save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'cifar10_%s_model.{epoch:03d}.h5' % model_type
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
filepath = os.path.join(save_dir, model_name)
# Prepare callbacks for model saving and for learning rate adjustment.
checkpoint = ModelCheckpoint(filepath=filepath,
monitor='val_acc',
verbose=1,
save_best_only=True)
lr_scheduler = LearningRateScheduler(lr_schedule)
lr_reducer = ReduceLROnPlateau(factor=np.sqrt(0.1),
cooldown=0,
patience=5,
min_lr=0.5e-6)
callbacks = [checkpoint, lr_reducer, lr_scheduler]
# Run training, with or without data augmentation.
if not data_augmentation:
print('Not using data augmentation.')
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
shuffle=True,
callbacks=callbacks)
else:
print('Using real-time data augmentation.')
# This will do preprocessing and realtime data augmentation:
datagen = ImageDataGenerator(
# set input mean to 0 over the dataset
featurewise_center=False,
# set each sample mean to 0
samplewise_center=False,
# divide inputs by std of dataset
featurewise_std_normalization=False,
# divide each input by its std
samplewise_std_normalization=False,
# apply ZCA whitening
zca_whitening=False,
# epsilon for ZCA whitening
zca_epsilon=1e-06,
# randomly rotate images in the range (deg 0 to 180)
rotation_range=0,
# randomly shift images horizontally
width_shift_range=0.1,
# randomly shift images vertically
height_shift_range=0.1,
# set range for random shear
shear_range=0.,
# set range for random zoom
zoom_range=0.,
# set range for random channel shifts
channel_shift_range=0.,
# set mode for filling points outside the input boundaries
fill_mode='nearest',
# value used for fill_mode = "constant"
cval=0.,
# randomly flip images
horizontal_flip=True,
# randomly flip images
vertical_flip=False,
# set rescaling factor (applied before any other transformation)
rescale=None,
# set function that will be applied on each input
preprocessing_function=None,
# image data format, either "channels_first" or "channels_last"
data_format=None,
# fraction of images reserved for validation (strictly between 0 and 1)
validation_split=0.0)
# Compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied).
datagen.fit(x_train)
# Fit the model on the batches generated by datagen.flow().
model.fit_generator(datagen.flow(x_train, y_train, batch_size=batch_size),
validation_data=(x_test, y_test),
epochs=epochs, verbose=1, workers=4,
callbacks=callbacks)
# Score trained model.
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])
Using TensorFlow backend.
Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
170500096/170498071 [==============================] - 229s 1us/step
x_train shape: (50000, 32, 32, 3)
50000 train samples
10000 test samples
y_train shape: (50000, 1)
Learning rate: 0.001
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) (None, 32, 32, 3) 0
__________________________________________________________________________________________________
conv2d_1 (Conv2D) (None, 32, 32, 16) 448 input_1[0][0]
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 32, 32, 16) 64 conv2d_1[0][0]
__________________________________________________________________________________________________
activation_1 (Activation) (None, 32, 32, 16) 0 batch_normalization_1[0][0]
__________________________________________________________________________________________________
conv2d_2 (Conv2D) (None, 32, 32, 16) 2320 activation_1[0][0]
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 32, 32, 16) 64 conv2d_2[0][0]
__________________________________________________________________________________________________
activation_2 (Activation) (None, 32, 32, 16) 0 batch_normalization_2[0][0]
__________________________________________________________________________________________________
conv2d_3 (Conv2D) (None, 32, 32, 16) 2320 activation_2[0][0]
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 32, 32, 16) 64 conv2d_3[0][0]
__________________________________________________________________________________________________
add_1 (Add) (None, 32, 32, 16) 0 activation_1[0][0]
batch_normalization_3[0][0]
__________________________________________________________________________________________________
activation_3 (Activation) (None, 32, 32, 16) 0 add_1[0][0]
__________________________________________________________________________________________________
conv2d_4 (Conv2D) (None, 32, 32, 16) 2320 activation_3[0][0]
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 32, 32, 16) 64 conv2d_4[0][0]
__________________________________________________________________________________________________
activation_4 (Activation) (None, 32, 32, 16) 0 batch_normalization_4[0][0]
__________________________________________________________________________________________________
conv2d_5 (Conv2D) (None, 32, 32, 16) 2320 activation_4[0][0]
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 32, 32, 16) 64 conv2d_5[0][0]
__________________________________________________________________________________________________
add_2 (Add) (None, 32, 32, 16) 0 activation_3[0][0]
batch_normalization_5[0][0]
__________________________________________________________________________________________________
activation_5 (Activation) (None, 32, 32, 16) 0 add_2[0][0]
__________________________________________________________________________________________________
conv2d_6 (Conv2D) (None, 32, 32, 16) 2320 activation_5[0][0]
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 32, 32, 16) 64 conv2d_6[0][0]
__________________________________________________________________________________________________
activation_6 (Activation) (None, 32, 32, 16) 0 batch_normalization_6[0][0]
__________________________________________________________________________________________________
conv2d_7 (Conv2D) (None, 32, 32, 16) 2320 activation_6[0][0]
__________________________________________________________________________________________________
batch_normalization_7 (BatchNor (None, 32, 32, 16) 64 conv2d_7[0][0]
__________________________________________________________________________________________________
add_3 (Add) (None, 32, 32, 16) 0 activation_5[0][0]
batch_normalization_7[0][0]
__________________________________________________________________________________________________
activation_7 (Activation) (None, 32, 32, 16) 0 add_3[0][0]
__________________________________________________________________________________________________
conv2d_8 (Conv2D) (None, 16, 16, 32) 4640 activation_7[0][0]
__________________________________________________________________________________________________
batch_normalization_8 (BatchNor (None, 16, 16, 32) 128 conv2d_8[0][0]
__________________________________________________________________________________________________
activation_8 (Activation) (None, 16, 16, 32) 0 batch_normalization_8[0][0]
__________________________________________________________________________________________________
conv2d_9 (Conv2D) (None, 16, 16, 32) 9248 activation_8[0][0]
__________________________________________________________________________________________________
conv2d_10 (Conv2D) (None, 16, 16, 32) 544 activation_7[0][0]
__________________________________________________________________________________________________
batch_normalization_9 (BatchNor (None, 16, 16, 32) 128 conv2d_9[0][0]
__________________________________________________________________________________________________
add_4 (Add) (None, 16, 16, 32) 0 conv2d_10[0][0]
batch_normalization_9[0][0]
__________________________________________________________________________________________________
activation_9 (Activation) (None, 16, 16, 32) 0 add_4[0][0]
__________________________________________________________________________________________________
conv2d_11 (Conv2D) (None, 16, 16, 32) 9248 activation_9[0][0]
__________________________________________________________________________________________________
batch_normalization_10 (BatchNo (None, 16, 16, 32) 128 conv2d_11[0][0]
__________________________________________________________________________________________________
activation_10 (Activation) (None, 16, 16, 32) 0 batch_normalization_10[0][0]
__________________________________________________________________________________________________
conv2d_12 (Conv2D) (None, 16, 16, 32) 9248 activation_10[0][0]
__________________________________________________________________________________________________
batch_normalization_11 (BatchNo (None, 16, 16, 32) 128 conv2d_12[0][0]
__________________________________________________________________________________________________
add_5 (Add) (None, 16, 16, 32) 0 activation_9[0][0]
batch_normalization_11[0][0]
__________________________________________________________________________________________________
activation_11 (Activation) (None, 16, 16, 32) 0 add_5[0][0]
__________________________________________________________________________________________________
conv2d_13 (Conv2D) (None, 16, 16, 32) 9248 activation_11[0][0]
__________________________________________________________________________________________________
batch_normalization_12 (BatchNo (None, 16, 16, 32) 128 conv2d_13[0][0]
__________________________________________________________________________________________________
activation_12 (Activation) (None, 16, 16, 32) 0 batch_normalization_12[0][0]
__________________________________________________________________________________________________
conv2d_14 (Conv2D) (None, 16, 16, 32) 9248 activation_12[0][0]
__________________________________________________________________________________________________
batch_normalization_13 (BatchNo (None, 16, 16, 32) 128 conv2d_14[0][0]
__________________________________________________________________________________________________
add_6 (Add) (None, 16, 16, 32) 0 activation_11[0][0]
batch_normalization_13[0][0]
__________________________________________________________________________________________________
activation_13 (Activation) (None, 16, 16, 32) 0 add_6[0][0]
__________________________________________________________________________________________________
conv2d_15 (Conv2D) (None, 8, 8, 64) 18496 activation_13[0][0]
__________________________________________________________________________________________________
batch_normalization_14 (BatchNo (None, 8, 8, 64) 256 conv2d_15[0][0]
__________________________________________________________________________________________________
activation_14 (Activation) (None, 8, 8, 64) 0 batch_normalization_14[0][0]
__________________________________________________________________________________________________
conv2d_16 (Conv2D) (None, 8, 8, 64) 36928 activation_14[0][0]
__________________________________________________________________________________________________
conv2d_17 (Conv2D) (None, 8, 8, 64) 2112 activation_13[0][0]
__________________________________________________________________________________________________
batch_normalization_15 (BatchNo (None, 8, 8, 64) 256 conv2d_16[0][0]
__________________________________________________________________________________________________
add_7 (Add) (None, 8, 8, 64) 0 conv2d_17[0][0]
batch_normalization_15[0][0]
__________________________________________________________________________________________________
activation_15 (Activation) (None, 8, 8, 64) 0 add_7[0][0]
__________________________________________________________________________________________________
conv2d_18 (Conv2D) (None, 8, 8, 64) 36928 activation_15[0][0]
__________________________________________________________________________________________________
batch_normalization_16 (BatchNo (None, 8, 8, 64) 256 conv2d_18[0][0]
__________________________________________________________________________________________________
activation_16 (Activation) (None, 8, 8, 64) 0 batch_normalization_16[0][0]
__________________________________________________________________________________________________
conv2d_19 (Conv2D) (None, 8, 8, 64) 36928 activation_16[0][0]
__________________________________________________________________________________________________
batch_normalization_17 (BatchNo (None, 8, 8, 64) 256 conv2d_19[0][0]
__________________________________________________________________________________________________
add_8 (Add) (None, 8, 8, 64) 0 activation_15[0][0]
batch_normalization_17[0][0]
__________________________________________________________________________________________________
activation_17 (Activation) (None, 8, 8, 64) 0 add_8[0][0]
__________________________________________________________________________________________________
conv2d_20 (Conv2D) (None, 8, 8, 64) 36928 activation_17[0][0]
__________________________________________________________________________________________________
batch_normalization_18 (BatchNo (None, 8, 8, 64) 256 conv2d_20[0][0]
__________________________________________________________________________________________________
activation_18 (Activation) (None, 8, 8, 64) 0 batch_normalization_18[0][0]
__________________________________________________________________________________________________
conv2d_21 (Conv2D) (None, 8, 8, 64) 36928 activation_18[0][0]
__________________________________________________________________________________________________
batch_normalization_19 (BatchNo (None, 8, 8, 64) 256 conv2d_21[0][0]
__________________________________________________________________________________________________
add_9 (Add) (None, 8, 8, 64) 0 activation_17[0][0]
batch_normalization_19[0][0]
__________________________________________________________________________________________________
activation_19 (Activation) (None, 8, 8, 64) 0 add_9[0][0]
__________________________________________________________________________________________________
average_pooling2d_1 (AveragePoo (None, 1, 1, 64) 0 activation_19[0][0]
__________________________________________________________________________________________________
flatten_1 (Flatten) (None, 64) 0 average_pooling2d_1[0][0]
__________________________________________________________________________________________________
dense_1 (Dense) (None, 10) 650 flatten_1[0][0]
==================================================================================================
Total params: 274,442
Trainable params: 273,066
Non-trainable params: 1,376
__________________________________________________________________________________________________
ResNet20v1
Using real-time data augmentation.
Epoch 1/200
Learning rate: 0.001
1563/1563 [==============================] - 62s 40ms/step - loss: 1.5450 - acc: 0.4869 - val_loss: 1.4411 - val_acc: 0.5572
Epoch 00001: val_acc improved from -inf to 0.55720, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.001.h5
Epoch 2/200
Learning rate: 0.001
1563/1563 [==============================] - 54s 35ms/step - loss: 1.1575 - acc: 0.6364 - val_loss: 1.2866 - val_acc: 0.5988
Epoch 00002: val_acc improved from 0.55720 to 0.59880, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.002.h5
Epoch 3/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.9936 - acc: 0.7001 - val_loss: 1.1053 - val_acc: 0.6696
Epoch 00003: val_acc improved from 0.59880 to 0.66960, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.003.h5
Epoch 4/200
Learning rate: 0.001
1563/1563 [==============================] - 56s 36ms/step - loss: 0.9068 - acc: 0.7330 - val_loss: 1.2314 - val_acc: 0.6543
Epoch 00004: val_acc did not improve
Epoch 5/200
Learning rate: 0.001
1563/1563 [==============================] - 56s 36ms/step - loss: 0.8399 - acc: 0.7599 - val_loss: 1.1613 - val_acc: 0.6895
Epoch 00005: val_acc improved from 0.66960 to 0.68950, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.005.h5
Epoch 6/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.7922 - acc: 0.7781 - val_loss: 0.9809 - val_acc: 0.7272
Epoch 00006: val_acc improved from 0.68950 to 0.72720, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.006.h5
Epoch 7/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.7638 - acc: 0.7903 - val_loss: 1.2414 - val_acc: 0.6659
Epoch 00007: val_acc did not improve
Epoch 8/200
Learning rate: 0.001
1563/1563 [==============================] - 54s 35ms/step - loss: 0.7334 - acc: 0.8041 - val_loss: 0.7423 - val_acc: 0.8026
Epoch 00008: val_acc improved from 0.72720 to 0.80260, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.008.h5
Epoch 9/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.7154 - acc: 0.8112 - val_loss: 0.9000 - val_acc: 0.7604
Epoch 00009: val_acc did not improve
Epoch 10/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.6913 - acc: 0.8205 - val_loss: 1.0617 - val_acc: 0.7192
Epoch 00010: val_acc did not improve
Epoch 11/200
Learning rate: 0.001
1563/1563 [==============================] - 54s 35ms/step - loss: 0.6799 - acc: 0.8259 - val_loss: 0.7639 - val_acc: 0.7962
Epoch 00011: val_acc did not improve
Epoch 12/200
Learning rate: 0.001
1563/1563 [==============================] - 54s 35ms/step - loss: 0.6642 - acc: 0.8328 - val_loss: 0.9833 - val_acc: 0.7424
Epoch 00012: val_acc did not improve
Epoch 13/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.6554 - acc: 0.8336 - val_loss: 0.7743 - val_acc: 0.7950
Epoch 00013: val_acc did not improve
Epoch 14/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.6433 - acc: 0.8399 - val_loss: 1.1566 - val_acc: 0.7168
Epoch 00014: val_acc did not improve
Epoch 15/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.6337 - acc: 0.8441 - val_loss: 0.7490 - val_acc: 0.8098
Epoch 00015: val_acc improved from 0.80260 to 0.80980, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.015.h5
Epoch 16/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.6280 - acc: 0.8460 - val_loss: 0.8865 - val_acc: 0.7770
Epoch 00016: val_acc did not improve
Epoch 17/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.6197 - acc: 0.8498 - val_loss: 0.8461 - val_acc: 0.7778
Epoch 00017: val_acc did not improve
Epoch 18/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.6085 - acc: 0.8560 - val_loss: 0.7646 - val_acc: 0.8076
Epoch 00018: val_acc did not improve
Epoch 19/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.6068 - acc: 0.8560 - val_loss: 0.9842 - val_acc: 0.7631
Epoch 00019: val_acc did not improve
Epoch 20/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5933 - acc: 0.8602 - val_loss: 0.7247 - val_acc: 0.8288
Epoch 00020: val_acc improved from 0.80980 to 0.82880, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.020.h5
Epoch 21/200
Learning rate: 0.001
1563/1563 [==============================] - 56s 36ms/step - loss: 0.5903 - acc: 0.8626 - val_loss: 0.7705 - val_acc: 0.8188
Epoch 00021: val_acc did not improve
Epoch 22/200
Learning rate: 0.001
1563/1563 [==============================] - 56s 36ms/step - loss: 0.5885 - acc: 0.8629 - val_loss: 0.9729 - val_acc: 0.7541
Epoch 00022: val_acc did not improve
Epoch 23/200
Learning rate: 0.001
1563/1563 [==============================] - 56s 36ms/step - loss: 0.5883 - acc: 0.8640 - val_loss: 0.7466 - val_acc: 0.8185
Epoch 00023: val_acc did not improve
Epoch 24/200
Learning rate: 0.001
1563/1563 [==============================] - 56s 36ms/step - loss: 0.5783 - acc: 0.8669 - val_loss: 0.8232 - val_acc: 0.7970
Epoch 00024: val_acc did not improve
Epoch 25/200
Learning rate: 0.001
1563/1563 [==============================] - 56s 36ms/step - loss: 0.5757 - acc: 0.8684 - val_loss: 0.7166 - val_acc: 0.8330
Epoch 00025: val_acc improved from 0.82880 to 0.83300, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.025.h5
Epoch 26/200
Learning rate: 0.001
1563/1563 [==============================] - 56s 36ms/step - loss: 0.5682 - acc: 0.8710 - val_loss: 0.9105 - val_acc: 0.7804
Epoch 00026: val_acc did not improve
Epoch 27/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5720 - acc: 0.8697 - val_loss: 0.6989 - val_acc: 0.8347
Epoch 00027: val_acc improved from 0.83300 to 0.83470, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.027.h5
Epoch 28/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5602 - acc: 0.8744 - val_loss: 1.0792 - val_acc: 0.7432
Epoch 00028: val_acc did not improve
Epoch 29/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5610 - acc: 0.8732 - val_loss: 0.7994 - val_acc: 0.8054
Epoch 00029: val_acc did not improve
Epoch 30/200
Learning rate: 0.001
1563/1563 [==============================] - 54s 35ms/step - loss: 0.5597 - acc: 0.8750 - val_loss: 0.7123 - val_acc: 0.8344
Epoch 00030: val_acc did not improve
Epoch 31/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5540 - acc: 0.8782 - val_loss: 0.7432 - val_acc: 0.8168
Epoch 00031: val_acc did not improve
Epoch 32/200
Learning rate: 0.001
1563/1563 [==============================] - 54s 35ms/step - loss: 0.5500 - acc: 0.8787 - val_loss: 0.7249 - val_acc: 0.8253
Epoch 00032: val_acc did not improve
Epoch 33/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5486 - acc: 0.8812 - val_loss: 0.6406 - val_acc: 0.8509
Epoch 00033: val_acc improved from 0.83470 to 0.85090, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.033.h5
Epoch 34/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5472 - acc: 0.8796 - val_loss: 0.7195 - val_acc: 0.8308
Epoch 00034: val_acc did not improve
Epoch 35/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5412 - acc: 0.8822 - val_loss: 0.6515 - val_acc: 0.8556
Epoch 00035: val_acc improved from 0.85090 to 0.85560, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.035.h5
Epoch 36/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5414 - acc: 0.8824 - val_loss: 0.6497 - val_acc: 0.8488
Epoch 00036: val_acc did not improve
Epoch 37/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5379 - acc: 0.8827 - val_loss: 0.7754 - val_acc: 0.8096
Epoch 00037: val_acc did not improve
Epoch 38/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5373 - acc: 0.8844 - val_loss: 0.6920 - val_acc: 0.8396
Epoch 00038: val_acc did not improve
Epoch 39/200
Learning rate: 0.001
1563/1563 [==============================] - 53s 34ms/step - loss: 0.5356 - acc: 0.8843 - val_loss: 0.6264 - val_acc: 0.8569
Epoch 00039: val_acc improved from 0.85560 to 0.85690, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.039.h5
Epoch 40/200
Learning rate: 0.001
1563/1563 [==============================] - 53s 34ms/step - loss: 0.5332 - acc: 0.8845 - val_loss: 0.6754 - val_acc: 0.8395
Epoch 00040: val_acc did not improve
Epoch 41/200
Learning rate: 0.001
1563/1563 [==============================] - 52s 33ms/step - loss: 0.5285 - acc: 0.8874 - val_loss: 0.8491 - val_acc: 0.7873
Epoch 00041: val_acc did not improve
Epoch 42/200
Learning rate: 0.001
1563/1563 [==============================] - 53s 34ms/step - loss: 0.5344 - acc: 0.8855 - val_loss: 0.7352 - val_acc: 0.8274
Epoch 00042: val_acc did not improve
Epoch 43/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5261 - acc: 0.8892 - val_loss: 0.6778 - val_acc: 0.8520
Epoch 00043: val_acc did not improve
Epoch 44/200
Learning rate: 0.001
1563/1563 [==============================] - 56s 36ms/step - loss: 0.5258 - acc: 0.8887 - val_loss: 0.7849 - val_acc: 0.8130
Epoch 00044: val_acc did not improve
Epoch 45/200
Learning rate: 0.001
1563/1563 [==============================] - 56s 36ms/step - loss: 0.5287 - acc: 0.8885 - val_loss: 0.7625 - val_acc: 0.8169
Epoch 00045: val_acc did not improve
Epoch 46/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5220 - acc: 0.8886 - val_loss: 0.6575 - val_acc: 0.8472
Epoch 00046: val_acc did not improve
Epoch 47/200
Learning rate: 0.001
1563/1563 [==============================] - 56s 36ms/step - loss: 0.5241 - acc: 0.8874 - val_loss: 0.7637 - val_acc: 0.8172
Epoch 00047: val_acc did not improve
Epoch 48/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5174 - acc: 0.8914 - val_loss: 0.6850 - val_acc: 0.8447
Epoch 00048: val_acc did not improve
Epoch 49/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5182 - acc: 0.8901 - val_loss: 0.7210 - val_acc: 0.8338
Epoch 00049: val_acc did not improve
Epoch 50/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5185 - acc: 0.8908 - val_loss: 0.7338 - val_acc: 0.8394
Epoch 00050: val_acc did not improve
Epoch 51/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5175 - acc: 0.8912 - val_loss: 0.8267 - val_acc: 0.8043
Epoch 00051: val_acc did not improve
Epoch 52/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5132 - acc: 0.8929 - val_loss: 0.7177 - val_acc: 0.8431
Epoch 00052: val_acc did not improve
Epoch 53/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5127 - acc: 0.8928 - val_loss: 0.6524 - val_acc: 0.8531
Epoch 00053: val_acc did not improve
Epoch 54/200
Learning rate: 0.001
1563/1563 [==============================] - 56s 36ms/step - loss: 0.5123 - acc: 0.8925 - val_loss: 0.7192 - val_acc: 0.8334
Epoch 00054: val_acc did not improve
Epoch 55/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5103 - acc: 0.8935 - val_loss: 0.7552 - val_acc: 0.8261
Epoch 00055: val_acc did not improve
Epoch 56/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5101 - acc: 0.8928 - val_loss: 0.6905 - val_acc: 0.8425
Epoch 00056: val_acc did not improve
Epoch 57/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5061 - acc: 0.8959 - val_loss: 0.7146 - val_acc: 0.8328
Epoch 00057: val_acc did not improve
Epoch 58/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5064 - acc: 0.8973 - val_loss: 0.6820 - val_acc: 0.8439
Epoch 00058: val_acc did not improve
Epoch 59/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5099 - acc: 0.8934 - val_loss: 0.6743 - val_acc: 0.8489
Epoch 00059: val_acc did not improve
Epoch 60/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.5035 - acc: 0.8946 - val_loss: 0.7986 - val_acc: 0.8095
Epoch 00060: val_acc did not improve
Epoch 61/200
Learning rate: 0.001
1563/1563 [==============================] - 54s 35ms/step - loss: 0.5055 - acc: 0.8943 - val_loss: 0.7580 - val_acc: 0.8172
Epoch 00061: val_acc did not improve
Epoch 62/200
Learning rate: 0.001
1563/1563 [==============================] - 53s 34ms/step - loss: 0.5021 - acc: 0.8971 - val_loss: 0.6608 - val_acc: 0.8505
Epoch 00062: val_acc did not improve
Epoch 63/200
Learning rate: 0.001
1563/1563 [==============================] - 53s 34ms/step - loss: 0.4998 - acc: 0.8977 - val_loss: 0.6325 - val_acc: 0.8638
Epoch 00063: val_acc improved from 0.85690 to 0.86380, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.063.h5
Epoch 64/200
Learning rate: 0.001
1563/1563 [==============================] - 54s 34ms/step - loss: 0.4954 - acc: 0.8991 - val_loss: 0.7133 - val_acc: 0.8333
Epoch 00064: val_acc did not improve
Epoch 65/200
Learning rate: 0.001
1563/1563 [==============================] - 54s 34ms/step - loss: 0.5006 - acc: 0.8963 - val_loss: 0.5884 - val_acc: 0.8700
Epoch 00065: val_acc improved from 0.86380 to 0.87000, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.065.h5
Epoch 66/200
Learning rate: 0.001
1563/1563 [==============================] - 54s 34ms/step - loss: 0.4968 - acc: 0.8991 - val_loss: 0.7798 - val_acc: 0.8250
Epoch 00066: val_acc did not improve
Epoch 67/200
Learning rate: 0.001
1563/1563 [==============================] - 53s 34ms/step - loss: 0.4973 - acc: 0.8975 - val_loss: 0.6273 - val_acc: 0.8610
Epoch 00067: val_acc did not improve
Epoch 68/200
Learning rate: 0.001
1563/1563 [==============================] - 54s 34ms/step - loss: 0.4951 - acc: 0.8984 - val_loss: 0.6510 - val_acc: 0.8530
Epoch 00068: val_acc did not improve
Epoch 69/200
Learning rate: 0.001
1563/1563 [==============================] - 53s 34ms/step - loss: 0.4940 - acc: 0.9002 - val_loss: 0.6601 - val_acc: 0.8486
Epoch 00069: val_acc did not improve
Epoch 70/200
Learning rate: 0.001
1563/1563 [==============================] - 53s 34ms/step - loss: 0.4966 - acc: 0.8999 - val_loss: 0.7840 - val_acc: 0.8328
Epoch 00070: val_acc did not improve
Epoch 71/200
Learning rate: 0.001
1563/1563 [==============================] - 54s 34ms/step - loss: 0.4920 - acc: 0.9001 - val_loss: 0.6757 - val_acc: 0.8427
Epoch 00071: val_acc did not improve
Epoch 72/200
Learning rate: 0.001
1563/1563 [==============================] - 54s 34ms/step - loss: 0.4894 - acc: 0.9021 - val_loss: 0.6498 - val_acc: 0.8579
Epoch 00072: val_acc did not improve
Epoch 73/200
Learning rate: 0.001
1563/1563 [==============================] - 54s 34ms/step - loss: 0.4923 - acc: 0.9017 - val_loss: 0.7005 - val_acc: 0.8454
Epoch 00073: val_acc did not improve
Epoch 74/200
Learning rate: 0.001
1563/1563 [==============================] - 54s 34ms/step - loss: 0.4925 - acc: 0.9000 - val_loss: 0.6865 - val_acc: 0.8393
Epoch 00074: val_acc did not improve
Epoch 75/200
Learning rate: 0.001
1563/1563 [==============================] - 56s 36ms/step - loss: 0.4863 - acc: 0.9029 - val_loss: 0.6502 - val_acc: 0.8564
Epoch 00075: val_acc did not improve
Epoch 76/200
Learning rate: 0.001
1563/1563 [==============================] - 53s 34ms/step - loss: 0.4893 - acc: 0.9012 - val_loss: 0.7414 - val_acc: 0.8398
Epoch 00076: val_acc did not improve
Epoch 77/200
Learning rate: 0.001
1563/1563 [==============================] - 54s 34ms/step - loss: 0.4878 - acc: 0.9022 - val_loss: 0.6993 - val_acc: 0.8454
Epoch 00077: val_acc did not improve
Epoch 78/200
Learning rate: 0.001
1563/1563 [==============================] - 54s 35ms/step - loss: 0.4879 - acc: 0.9026 - val_loss: 0.6885 - val_acc: 0.8408
Epoch 00078: val_acc did not improve
Epoch 79/200
Learning rate: 0.001
1563/1563 [==============================] - 54s 35ms/step - loss: 0.4852 - acc: 0.9022 - val_loss: 0.7038 - val_acc: 0.8450
Epoch 00079: val_acc did not improve
Epoch 80/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.4882 - acc: 0.9018 - val_loss: 0.7610 - val_acc: 0.8337
Epoch 00080: val_acc did not improve
Epoch 81/200
Learning rate: 0.001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.4904 - acc: 0.9013 - val_loss: 0.6659 - val_acc: 0.8493
Epoch 00081: val_acc did not improve
Epoch 82/200
Learning rate: 0.0001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.4031 - acc: 0.9305 - val_loss: 0.4911 - val_acc: 0.9002
Epoch 00082: val_acc improved from 0.87000 to 0.90020, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.082.h5
Epoch 83/200
Learning rate: 0.0001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.3702 - acc: 0.9417 - val_loss: 0.4916 - val_acc: 0.9034
Epoch 00083: val_acc improved from 0.90020 to 0.90340, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.083.h5
Epoch 84/200
Learning rate: 0.0001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.3576 - acc: 0.9443 - val_loss: 0.4750 - val_acc: 0.9065
Epoch 00084: val_acc improved from 0.90340 to 0.90650, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.084.h5
Epoch 85/200
Learning rate: 0.0001
1563/1563 [==============================] - 56s 36ms/step - loss: 0.3437 - acc: 0.9479 - val_loss: 0.4818 - val_acc: 0.9051
Epoch 00085: val_acc did not improve
Epoch 86/200
Learning rate: 0.0001
1563/1563 [==============================] - 52s 33ms/step - loss: 0.3326 - acc: 0.9504 - val_loss: 0.4778 - val_acc: 0.9056
Epoch 00086: val_acc did not improve
Epoch 87/200
Learning rate: 0.0001
1563/1563 [==============================] - 52s 33ms/step - loss: 0.3224 - acc: 0.9529 - val_loss: 0.4658 - val_acc: 0.9087
Epoch 00087: val_acc improved from 0.90650 to 0.90870, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.087.h5
Epoch 88/200
Learning rate: 0.0001
1563/1563 [==============================] - 53s 34ms/step - loss: 0.3168 - acc: 0.9534 - val_loss: 0.4598 - val_acc: 0.9082
Epoch 00088: val_acc did not improve
Epoch 89/200
Learning rate: 0.0001
1563/1563 [==============================] - 52s 33ms/step - loss: 0.3106 - acc: 0.9555 - val_loss: 0.4645 - val_acc: 0.9090
Epoch 00089: val_acc improved from 0.90870 to 0.90900, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.089.h5
Epoch 90/200
Learning rate: 0.0001
1563/1563 [==============================] - 53s 34ms/step - loss: 0.3030 - acc: 0.9572 - val_loss: 0.4550 - val_acc: 0.9088
Epoch 00090: val_acc did not improve
Epoch 91/200
Learning rate: 0.0001
1563/1563 [==============================] - 53s 34ms/step - loss: 0.2973 - acc: 0.9565 - val_loss: 0.4518 - val_acc: 0.9103
Epoch 00091: val_acc improved from 0.90900 to 0.91030, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.091.h5
Epoch 92/200
Learning rate: 0.0001
1563/1563 [==============================] - 54s 34ms/step - loss: 0.2904 - acc: 0.9581 - val_loss: 0.4672 - val_acc: 0.9072
Epoch 00092: val_acc did not improve
Epoch 93/200
Learning rate: 0.0001
1563/1563 [==============================] - 54s 34ms/step - loss: 0.2856 - acc: 0.9602 - val_loss: 0.4597 - val_acc: 0.9103
Epoch 00093: val_acc did not improve
Epoch 94/200
Learning rate: 0.0001
1563/1563 [==============================] - 54s 34ms/step - loss: 0.2818 - acc: 0.9604 - val_loss: 0.4600 - val_acc: 0.9099
Epoch 00094: val_acc did not improve
Epoch 95/200
Learning rate: 0.0001
1563/1563 [==============================] - 53s 34ms/step - loss: 0.2775 - acc: 0.9611 - val_loss: 0.4558 - val_acc: 0.9104
Epoch 00095: val_acc improved from 0.91030 to 0.91040, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.095.h5
Epoch 96/200
Learning rate: 0.0001
1563/1563 [==============================] - 53s 34ms/step - loss: 0.2721 - acc: 0.9627 - val_loss: 0.4542 - val_acc: 0.9122
Epoch 00096: val_acc improved from 0.91040 to 0.91220, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.096.h5
Epoch 97/200
Learning rate: 0.0001
1563/1563 [==============================] - 53s 34ms/step - loss: 0.2663 - acc: 0.9643 - val_loss: 0.4562 - val_acc: 0.9112
Epoch 00097: val_acc did not improve
Epoch 98/200
Learning rate: 0.0001
1563/1563 [==============================] - 53s 34ms/step - loss: 0.2677 - acc: 0.9615 - val_loss: 0.4438 - val_acc: 0.9135
Epoch 00098: val_acc improved from 0.91220 to 0.91350, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.098.h5
Epoch 99/200
Learning rate: 0.0001
1563/1563 [==============================] - 53s 34ms/step - loss: 0.2612 - acc: 0.9639 - val_loss: 0.4575 - val_acc: 0.9110
Epoch 00099: val_acc did not improve
Epoch 100/200
Learning rate: 0.0001
1563/1563 [==============================] - 52s 33ms/step - loss: 0.2560 - acc: 0.9643 - val_loss: 0.4570 - val_acc: 0.9109
Epoch 00100: val_acc did not improve
Epoch 101/200
Learning rate: 0.0001
1563/1563 [==============================] - 54s 34ms/step - loss: 0.2532 - acc: 0.9661 - val_loss: 0.4484 - val_acc: 0.9136
Epoch 00101: val_acc improved from 0.91350 to 0.91360, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.101.h5
Epoch 102/200
Learning rate: 0.0001
1563/1563 [==============================] - 53s 34ms/step - loss: 0.2506 - acc: 0.9653 - val_loss: 0.4632 - val_acc: 0.9094
Epoch 00102: val_acc did not improve
Epoch 103/200
Learning rate: 0.0001
1563/1563 [==============================] - 54s 35ms/step - loss: 0.2495 - acc: 0.9647 - val_loss: 0.4633 - val_acc: 0.9064
Epoch 00103: val_acc did not improve
Epoch 104/200
Learning rate: 0.0001
1563/1563 [==============================] - 52s 34ms/step - loss: 0.2434 - acc: 0.9671 - val_loss: 0.4424 - val_acc: 0.9140
Epoch 00104: val_acc improved from 0.91360 to 0.91400, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.104.h5
Epoch 105/200
Learning rate: 0.0001
1563/1563 [==============================] - 53s 34ms/step - loss: 0.2407 - acc: 0.9678 - val_loss: 0.4628 - val_acc: 0.9090
Epoch 00105: val_acc did not improve
Epoch 106/200
Learning rate: 0.0001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.2374 - acc: 0.9688 - val_loss: 0.4561 - val_acc: 0.9100
Epoch 00106: val_acc did not improve
Epoch 107/200
Learning rate: 0.0001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.2339 - acc: 0.9692 - val_loss: 0.4449 - val_acc: 0.9124
Epoch 00107: val_acc did not improve
Epoch 108/200
Learning rate: 0.0001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.2302 - acc: 0.9698 - val_loss: 0.4397 - val_acc: 0.9130
Epoch 00108: val_acc did not improve
Epoch 109/200
Learning rate: 0.0001
1563/1563 [==============================] - 53s 34ms/step - loss: 0.2282 - acc: 0.9701 - val_loss: 0.4774 - val_acc: 0.9061
Epoch 00109: val_acc did not improve
Epoch 110/200
Learning rate: 0.0001
1563/1563 [==============================] - 60s 39ms/step - loss: 0.2311 - acc: 0.9677 - val_loss: 0.4568 - val_acc: 0.9108
Epoch 00110: val_acc did not improve
Epoch 111/200
Learning rate: 0.0001
1563/1563 [==============================] - 60s 39ms/step - loss: 0.2255 - acc: 0.9702 - val_loss: 0.4464 - val_acc: 0.9109
Epoch 00111: val_acc did not improve
Epoch 112/200
Learning rate: 0.0001
1563/1563 [==============================] - 60s 38ms/step - loss: 0.2192 - acc: 0.9724 - val_loss: 0.4427 - val_acc: 0.9087
Epoch 00112: val_acc did not improve
Epoch 113/200
Learning rate: 0.0001
1563/1563 [==============================] - 60s 39ms/step - loss: 0.2198 - acc: 0.9705 - val_loss: 0.4315 - val_acc: 0.9150
Epoch 00113: val_acc improved from 0.91400 to 0.91500, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.113.h5
Epoch 114/200
Learning rate: 0.0001
1563/1563 [==============================] - 60s 38ms/step - loss: 0.2158 - acc: 0.9719 - val_loss: 0.4483 - val_acc: 0.9096
Epoch 00114: val_acc did not improve
Epoch 115/200
Learning rate: 0.0001
1563/1563 [==============================] - 60s 38ms/step - loss: 0.2139 - acc: 0.9723 - val_loss: 0.4432 - val_acc: 0.9144
Epoch 00115: val_acc did not improve
Epoch 116/200
Learning rate: 0.0001
1563/1563 [==============================] - 60s 39ms/step - loss: 0.2120 - acc: 0.9727 - val_loss: 0.4394 - val_acc: 0.9154
Epoch 00116: val_acc improved from 0.91500 to 0.91540, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.116.h5
Epoch 117/200
Learning rate: 0.0001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.2094 - acc: 0.9725 - val_loss: 0.4531 - val_acc: 0.9105
Epoch 00117: val_acc did not improve
Epoch 118/200
Learning rate: 0.0001
1563/1563 [==============================] - 52s 33ms/step - loss: 0.2079 - acc: 0.9737 - val_loss: 0.4340 - val_acc: 0.9141
Epoch 00118: val_acc did not improve
Epoch 119/200
Learning rate: 0.0001
1563/1563 [==============================] - 55s 35ms/step - loss: 0.2072 - acc: 0.9724 - val_loss: 0.4483 - val_acc: 0.9097
Epoch 00119: val_acc did not improve
Epoch 120/200
Learning rate: 0.0001
1563/1563 [==============================] - 53s 34ms/step - loss: 0.2053 - acc: 0.9722 - val_loss: 0.4489 - val_acc: 0.9111
Epoch 00120: val_acc did not improve
Epoch 121/200
Learning rate: 0.0001
1563/1563 [==============================] - 53s 34ms/step - loss: 0.2018 - acc: 0.9741 - val_loss: 0.4450 - val_acc: 0.9116
Epoch 00121: val_acc did not improve
Epoch 122/200
Learning rate: 1e-05
1563/1563 [==============================] - 53s 34ms/step - loss: 0.1936 - acc: 0.9773 - val_loss: 0.4296 - val_acc: 0.9174
Epoch 00122: val_acc improved from 0.91540 to 0.91740, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.122.h5
Epoch 123/200
Learning rate: 1e-05
1563/1563 [==============================] - 53s 34ms/step - loss: 0.1921 - acc: 0.9782 - val_loss: 0.4286 - val_acc: 0.9176
Epoch 00123: val_acc improved from 0.91740 to 0.91760, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.123.h5
Epoch 124/200
Learning rate: 1e-05
1563/1563 [==============================] - 59s 38ms/step - loss: 0.1896 - acc: 0.9787 - val_loss: 0.4283 - val_acc: 0.9178
Epoch 00124: val_acc improved from 0.91760 to 0.91780, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.124.h5
Epoch 125/200
Learning rate: 1e-05
1563/1563 [==============================] - 53s 34ms/step - loss: 0.1869 - acc: 0.9802 - val_loss: 0.4280 - val_acc: 0.9177
Epoch 00125: val_acc did not improve
Epoch 126/200
Learning rate: 1e-05
1563/1563 [==============================] - 53s 34ms/step - loss: 0.1859 - acc: 0.9801 - val_loss: 0.4285 - val_acc: 0.9174
Epoch 00126: val_acc did not improve
Epoch 127/200
Learning rate: 1e-05
1563/1563 [==============================] - 53s 34ms/step - loss: 0.1845 - acc: 0.9805 - val_loss: 0.4290 - val_acc: 0.9160
Epoch 00127: val_acc did not improve
Epoch 128/200
Learning rate: 1e-05
1563/1563 [==============================] - 54s 35ms/step - loss: 0.1836 - acc: 0.9807 - val_loss: 0.4292 - val_acc: 0.9182
Epoch 00128: val_acc improved from 0.91780 to 0.91820, saving model to E:\src\jupyter\paper\ResNet\saved_models\cifar10_ResNet20v1_model.128.h5
Epoch 129/200
Learning rate: 1e-05
1563/1563 [==============================] - 54s 34ms/step - loss: 0.1843 - acc: 0.9806 - val_loss: 0.4259 - val_acc: 0.9174
Epoch 00129: val_acc did not improve
Epoch 130/200
Learning rate: 1e-05
1563/1563 [==============================] - 52s 34ms/step - loss: 0.1832 - acc: 0.9804 - val_loss: 0.4282 - val_acc: 0.9178
Epoch 00130: val_acc did not improve
Epoch 131/200
Learning rate: 1e-05
1563/1563 [==============================] - 52s 33ms/step - loss: 0.1817 - acc: 0.9811 - val_loss: 0.4275 - val_acc: 0.9175
Epoch 00131: val_acc did not improve
Epoch 132/200
Learning rate: 1e-05
1563/1563 [==============================] - 52s 33ms/step - loss: 0.1848 - acc: 0.9802 - val_loss: 0.4287 - val_acc: 0.9178
Epoch 00132: val_acc did not improve
Epoch 133/200
Learning rate: 1e-05
1563/1563 [==============================] - 52s 33ms/step - loss: 0.1818 - acc: 0.9814 - val_loss: 0.4281 - val_acc: 0.9167
Epoch 00133: val_acc did not improve
Epoch 134/200
Learning rate: 1e-05
1563/1563 [==============================] - 52s 33ms/step - loss: 0.1811 - acc: 0.9810 - val_loss: 0.4269 - val_acc: 0.9177
Epoch 00134: val_acc did not improve
Epoch 135/200
Learning rate: 1e-05
1563/1563 [==============================] - 52s 33ms/step - loss: 0.1814 - acc: 0.9813 - val_loss: 0.4321 - val_acc: 0.9161
Epoch 00135: val_acc did not improve
Epoch 136/200
Learning rate: 1e-05
1563/1563 [==============================] - 54s 34ms/step - loss: 0.1805 - acc: 0.9808 - val_loss: 0.4292 - val_acc: 0.9171
Epoch 00136: val_acc did not improve
Epoch 137/200
Learning rate: 1e-05
1563/1563 [==============================] - 55s 35ms/step - loss: 0.1789 - acc: 0.9819 - val_loss: 0.4309 - val_acc: 0.9162
Epoch 00137: val_acc did not improve
Epoch 138/200
Learning rate: 1e-05
1563/1563 [==============================] - 52s 33ms/step - loss: 0.1817 - acc: 0.9807 - val_loss: 0.4314 - val_acc: 0.9172
Epoch 00138: val_acc did not improve
Epoch 139/200
Learning rate: 1e-05
1563/1563 [==============================] - 54s 35ms/step - loss: 0.1802 - acc: 0.9814 - val_loss: 0.4309 - val_acc: 0.9166
Epoch 00139: val_acc did not improve
Epoch 140/200
Learning rate: 1e-05
1563/1563 [==============================] - 53s 34ms/step - loss: 0.1790 - acc: 0.9819 - val_loss: 0.4314 - val_acc: 0.9163
Epoch 00140: val_acc did not improve
Epoch 141/200
Learning rate: 1e-05
1563/1563 [==============================] - 52s 33ms/step - loss: 0.1770 - acc: 0.9825 - val_loss: 0.4300 - val_acc: 0.9161
Epoch 00141: val_acc did not improve
Epoch 142/200
Learning rate: 1e-05
1563/1563 [==============================] - 51s 33ms/step - loss: 0.1777 - acc: 0.9815 - val_loss: 0.4293 - val_acc: 0.9169
Epoch 00142: val_acc did not improve
Epoch 143/200
Learning rate: 1e-05
1563/1563 [==============================] - 51s 33ms/step - loss: 0.1786 - acc: 0.9816 - val_loss: 0.4338 - val_acc: 0.9164
Epoch 00143: val_acc did not improve
Epoch 144/200
Learning rate: 1e-05
1563/1563 [==============================] - 51s 33ms/step - loss: 0.1774 - acc: 0.9829 - val_loss: 0.4296 - val_acc: 0.9160
Epoch 00144: val_acc did not improve
Epoch 145/200
Learning rate: 1e-05
1563/1563 [==============================] - 51s 33ms/step - loss: 0.1773 - acc: 0.9821 - val_loss: 0.4301 - val_acc: 0.9165
Epoch 00145: val_acc did not improve
Epoch 146/200
Learning rate: 1e-05
1563/1563 [==============================] - 54s 34ms/step - loss: 0.1770 - acc: 0.9817 - val_loss: 0.4327 - val_acc: 0.9163
Epoch 00146: val_acc did not improve
Epoch 147/200
Learning rate: 1e-05
1563/1563 [==============================] - 55s 35ms/step - loss: 0.1766 - acc: 0.9815 - val_loss: 0.4306 - val_acc: 0.9168
Epoch 00147: val_acc did not improve
Epoch 148/200
Learning rate: 1e-05
1563/1563 [==============================] - 54s 35ms/step - loss: 0.1746 - acc: 0.9828 - val_loss: 0.4314 - val_acc: 0.9170
Epoch 00148: val_acc did not improve
Epoch 149/200
Learning rate: 1e-05
1563/1563 [==============================] - 53s 34ms/step - loss: 0.1739 - acc: 0.9835 - val_loss: 0.4339 - val_acc: 0.9165
Epoch 00149: val_acc did not improve
Epoch 150/200
Learning rate: 1e-05
1563/1563 [==============================] - 54s 34ms/step - loss: 0.1748 - acc: 0.9824 - val_loss: 0.4321 - val_acc: 0.9169
Epoch 00150: val_acc did not improve
Epoch 151/200
Learning rate: 1e-05
1563/1563 [==============================] - 53s 34ms/step - loss: 0.1729 - acc: 0.9835 - val_loss: 0.4350 - val_acc: 0.9163
Epoch 00151: val_acc did not improve
Epoch 152/200
Learning rate: 1e-05
1563/1563 [==============================] - 52s 34ms/step - loss: 0.1743 - acc: 0.9828 - val_loss: 0.4340 - val_acc: 0.9159
Epoch 00152: val_acc did not improve
Epoch 153/200
Learning rate: 1e-05
1563/1563 [==============================] - 54s 34ms/step - loss: 0.1734 - acc: 0.9833 - val_loss: 0.4356 - val_acc: 0.9155
Epoch 00153: val_acc did not improve
Epoch 154/200
Learning rate: 1e-05
1563/1563 [==============================] - 53s 34ms/step - loss: 0.1744 - acc: 0.9826 - val_loss: 0.4352 - val_acc: 0.9158
Epoch 00154: val_acc did not improve
Epoch 155/200
Learning rate: 1e-05
1563/1563 [==============================] - 56s 36ms/step - loss: 0.1718 - acc: 0.9837 - val_loss: 0.4389 - val_acc: 0.9154
Epoch 00155: val_acc did not improve
Epoch 156/200
Learning rate: 1e-05
1563/1563 [==============================] - 52s 33ms/step - loss: 0.1755 - acc: 0.9815 - val_loss: 0.4369 - val_acc: 0.9163
Epoch 00156: val_acc did not improve
Epoch 157/200
Learning rate: 1e-05
1563/1563 [==============================] - 52s 34ms/step - loss: 0.1741 - acc: 0.9827 - val_loss: 0.4321 - val_acc: 0.9164
Epoch 00157: val_acc did not improve
Epoch 158/200
Learning rate: 1e-05
1563/1563 [==============================] - 53s 34ms/step - loss: 0.1725 - acc: 0.9832 - val_loss: 0.4329 - val_acc: 0.9167
Epoch 00158: val_acc did not improve
Epoch 159/200
Learning rate: 1e-05
1563/1563 [==============================] - 54s 34ms/step - loss: 0.1716 - acc: 0.9834 - val_loss: 0.4338 - val_acc: 0.9153
Epoch 00159: val_acc did not improve
Epoch 160/200
Learning rate: 1e-05
1563/1563 [==============================] - 52s 33ms/step - loss: 0.1712 - acc: 0.9838 - val_loss: 0.4369 - val_acc: 0.9154
Epoch 00160: val_acc did not improve
Epoch 161/200
Learning rate: 1e-05
1563/1563 [==============================] - 54s 34ms/step - loss: 0.1718 - acc: 0.9827 - val_loss: 0.4356 - val_acc: 0.9160
Epoch 00161: val_acc did not improve
Epoch 162/200
Learning rate: 1e-06
1563/1563 [==============================] - 53s 34ms/step - loss: 0.1711 - acc: 0.9832 - val_loss: 0.4353 - val_acc: 0.9160
Epoch 00162: val_acc did not improve
Epoch 163/200
Learning rate: 1e-06
1563/1563 [==============================] - 52s 33ms/step - loss: 0.1701 - acc: 0.9841 - val_loss: 0.4358 - val_acc: 0.9149
Epoch 00163: val_acc did not improve
Epoch 164/200
Learning rate: 1e-06
1563/1563 [==============================] - 52s 33ms/step - loss: 0.1706 - acc: 0.9840 - val_loss: 0.4345 - val_acc: 0.9156
Epoch 00164: val_acc did not improve
Epoch 165/200
Learning rate: 1e-06
1563/1563 [==============================] - 51s 33ms/step - loss: 0.1697 - acc: 0.9835 - val_loss: 0.4337 - val_acc: 0.9161
Epoch 00165: val_acc did not improve
Epoch 166/200
Learning rate: 1e-06
1563/1563 [==============================] - 51s 33ms/step - loss: 0.1690 - acc: 0.9844 - val_loss: 0.4332 - val_acc: 0.9163
Epoch 00166: val_acc did not improve
Epoch 167/200
Learning rate: 1e-06
1563/1563 [==============================] - 52s 33ms/step - loss: 0.1698 - acc: 0.9837 - val_loss: 0.4335 - val_acc: 0.9158
Epoch 00167: val_acc did not improve
Epoch 168/200
Learning rate: 1e-06
1563/1563 [==============================] - 53s 34ms/step - loss: 0.1713 - acc: 0.9836 - val_loss: 0.4342 - val_acc: 0.9158
Epoch 00168: val_acc did not improve
Epoch 169/200
Learning rate: 1e-06
1563/1563 [==============================] - 52s 33ms/step - loss: 0.1702 - acc: 0.9840 - val_loss: 0.4367 - val_acc: 0.9161
Epoch 00169: val_acc did not improve
Epoch 170/200
Learning rate: 1e-06
1563/1563 [==============================] - 51s 33ms/step - loss: 0.1694 - acc: 0.9847 - val_loss: 0.4326 - val_acc: 0.9163
Epoch 00170: val_acc did not improve
Epoch 171/200
Learning rate: 1e-06
1563/1563 [==============================] - 52s 33ms/step - loss: 0.1702 - acc: 0.9840 - val_loss: 0.4331 - val_acc: 0.9166
Epoch 00171: val_acc did not improve
Epoch 172/200
Learning rate: 1e-06
1563/1563 [==============================] - 52s 33ms/step - loss: 0.1694 - acc: 0.9839 - val_loss: 0.4347 - val_acc: 0.9164
Epoch 00172: val_acc did not improve
Epoch 173/200
Learning rate: 1e-06
1563/1563 [==============================] - 52s 33ms/step - loss: 0.1696 - acc: 0.9833 - val_loss: 0.4337 - val_acc: 0.9168
Epoch 00173: val_acc did not improve
Epoch 174/200
Learning rate: 1e-06
1563/1563 [==============================] - 52s 33ms/step - loss: 0.1694 - acc: 0.9840 - val_loss: 0.4360 - val_acc: 0.9162
Epoch 00174: val_acc did not improve
Epoch 175/200
Learning rate: 1e-06
1563/1563 [==============================] - 52s 33ms/step - loss: 0.1697 - acc: 0.9841 - val_loss: 0.4344 - val_acc: 0.9161
Epoch 00175: val_acc did not improve
Epoch 176/200
Learning rate: 1e-06
1563/1563 [==============================] - 52s 33ms/step - loss: 0.1696 - acc: 0.9841 - val_loss: 0.4334 - val_acc: 0.9165
Epoch 00176: val_acc did not improve
Epoch 177/200
Learning rate: 1e-06
1563/1563 [==============================] - 52s 33ms/step - loss: 0.1702 - acc: 0.9837 - val_loss: 0.4346 - val_acc: 0.9163
Epoch 00177: val_acc did not improve
Epoch 178/200
Learning rate: 1e-06
1563/1563 [==============================] - 51s 33ms/step - loss: 0.1689 - acc: 0.9841 - val_loss: 0.4337 - val_acc: 0.9162
Epoch 00178: val_acc did not improve
Epoch 179/200
Learning rate: 1e-06
1563/1563 [==============================] - 53s 34ms/step - loss: 0.1689 - acc: 0.9835 - val_loss: 0.4342 - val_acc: 0.9161
Epoch 00179: val_acc did not improve
Epoch 180/200
Learning rate: 1e-06
1563/1563 [==============================] - 55s 35ms/step - loss: 0.1689 - acc: 0.9841 - val_loss: 0.4334 - val_acc: 0.9168
Epoch 00180: val_acc did not improve
Epoch 181/200
Learning rate: 1e-06
1563/1563 [==============================] - 55s 35ms/step - loss: 0.1687 - acc: 0.9844 - val_loss: 0.4336 - val_acc: 0.9162
Epoch 00181: val_acc did not improve
Epoch 182/200
Learning rate: 5e-07
1563/1563 [==============================] - 55s 35ms/step - loss: 0.1695 - acc: 0.9839 - val_loss: 0.4327 - val_acc: 0.9163
Epoch 00182: val_acc did not improve
Epoch 183/200
Learning rate: 5e-07
1563/1563 [==============================] - 55s 35ms/step - loss: 0.1697 - acc: 0.9838 - val_loss: 0.4349 - val_acc: 0.9160
Epoch 00183: val_acc did not improve
Epoch 184/200
Learning rate: 5e-07
1563/1563 [==============================] - 55s 35ms/step - loss: 0.1690 - acc: 0.9847 - val_loss: 0.4347 - val_acc: 0.9164
Epoch 00184: val_acc did not improve
Epoch 185/200
Learning rate: 5e-07
1563/1563 [==============================] - 55s 35ms/step - loss: 0.1700 - acc: 0.9844 - val_loss: 0.4329 - val_acc: 0.9166
Epoch 00185: val_acc did not improve
Epoch 186/200
Learning rate: 5e-07
1563/1563 [==============================] - 57s 36ms/step - loss: 0.1686 - acc: 0.9845 - val_loss: 0.4340 - val_acc: 0.9170
Epoch 00186: val_acc did not improve
Epoch 187/200
Learning rate: 5e-07
1563/1563 [==============================] - 56s 36ms/step - loss: 0.1690 - acc: 0.9840 - val_loss: 0.4339 - val_acc: 0.9163
Epoch 00187: val_acc did not improve
Epoch 188/200
Learning rate: 5e-07
1563/1563 [==============================] - 55s 35ms/step - loss: 0.1706 - acc: 0.9838 - val_loss: 0.4352 - val_acc: 0.9162
Epoch 00188: val_acc did not improve
Epoch 189/200
Learning rate: 5e-07
1563/1563 [==============================] - 54s 35ms/step - loss: 0.1677 - acc: 0.9847 - val_loss: 0.4332 - val_acc: 0.9163
Epoch 00189: val_acc did not improve
Epoch 190/200
Learning rate: 5e-07
1563/1563 [==============================] - 54s 35ms/step - loss: 0.1685 - acc: 0.9847 - val_loss: 0.4339 - val_acc: 0.9161
Epoch 00190: val_acc did not improve
Epoch 191/200
Learning rate: 5e-07
1563/1563 [==============================] - 56s 36ms/step - loss: 0.1689 - acc: 0.9843 - val_loss: 0.4348 - val_acc: 0.9162
Epoch 00191: val_acc did not improve
Epoch 192/200
Learning rate: 5e-07
1563/1563 [==============================] - 55s 35ms/step - loss: 0.1699 - acc: 0.9841 - val_loss: 0.4344 - val_acc: 0.9160
Epoch 00192: val_acc did not improve
Epoch 193/200
Learning rate: 5e-07
1563/1563 [==============================] - 55s 35ms/step - loss: 0.1683 - acc: 0.9842 - val_loss: 0.4333 - val_acc: 0.9159
Epoch 00193: val_acc did not improve
Epoch 194/200
Learning rate: 5e-07
1563/1563 [==============================] - 55s 35ms/step - loss: 0.1702 - acc: 0.9839 - val_loss: 0.4347 - val_acc: 0.9161
Epoch 00194: val_acc did not improve
Epoch 195/200
Learning rate: 5e-07
1563/1563 [==============================] - 55s 35ms/step - loss: 0.1697 - acc: 0.9843 - val_loss: 0.4323 - val_acc: 0.9166
Epoch 00195: val_acc did not improve
Epoch 196/200
Learning rate: 5e-07
1563/1563 [==============================] - 55s 35ms/step - loss: 0.1712 - acc: 0.9833 - val_loss: 0.4334 - val_acc: 0.9166
Epoch 00196: val_acc did not improve
Epoch 197/200
Learning rate: 5e-07
1563/1563 [==============================] - 55s 35ms/step - loss: 0.1680 - acc: 0.9841 - val_loss: 0.4320 - val_acc: 0.9164
Epoch 00197: val_acc did not improve
Epoch 198/200
Learning rate: 5e-07
1563/1563 [==============================] - 55s 35ms/step - loss: 0.1696 - acc: 0.9844 - val_loss: 0.4331 - val_acc: 0.9166
Epoch 00198: val_acc did not improve
Epoch 199/200
Learning rate: 5e-07
1563/1563 [==============================] - 55s 35ms/step - loss: 0.1677 - acc: 0.9842 - val_loss: 0.4336 - val_acc: 0.9164
Epoch 00199: val_acc did not improve
Epoch 200/200
Learning rate: 5e-07
1563/1563 [==============================] - 55s 35ms/step - loss: 0.1705 - acc: 0.9834 - val_loss: 0.4347 - val_acc: 0.9164
Epoch 00200: val_acc did not improve
10000/10000 [==============================] - 3s 297us/step
Test loss: 0.43472515029907227
Test accuracy: 0.9164