原码, 反码, 补码 详解以及负数的按位与运算

本篇文章讲解了计算机的原码, 反码和补码. 并且进行了深入探求了为何要使用反码和补码, 以及更进一步的论证了为何可以用反码, 补码的加法计算原码的减法. 论证部分如有不对的地方请各位牛人帮忙指正! 希望本文对大家学习计算机基础有所帮助!

一. 机器数和真值
在学习原码, 反码和补码之前, 需要先了解机器数和真值的概念.

1、机器数

一个数在计算机中的二进制表示形式, 叫做这个数的机器数。机器数是带符号的,在计算机用一个数的最高位存放符号, 正数为0, 负数为1.

比如,十进制中的数 +3 ,计算机字长为8位,转换成二进制就是00000011。如果是 -3 ,就是 10000011 。

那么,这里的 00000011 和 10000011 就是机器数。

2、真值

因为第一位是符号位,所以机器数的形式值就不等于真正的数值。例如上面的有符号数 10000011,其最高位1代表负,其真正数值是 -3 而不是形式值131(10000011转换成十进制等于131)。所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值。

例:0000 0001的真值 = +000 0001 = +1,1000 0001的真值 = –000 0001 = –1
二. 原码, 反码, 补码的基础概念和计算方法.
在探求为何机器要使用补码之前, 让我们先了解原码, 反码和补码的概念.对于一个数, 计算机要使用一定的编码方式进行存储. 原码, 反码, 补码是机器存储一个具体数字的编码方式.

  1. 原码

原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制:

[+1]原 = 0000 0001

[-1]原 = 1000 0001

第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是:

[1111 1111 , 0111 1111]

[-127 , 127]

原码是人脑最容易理解和计算的表示方式.

  1. 反码

反码的表示方法是:

正数的反码是其本身

负数的反码是在其原码的基础上, 符号位不变,其余各个位取反.

[+1] = [00000001]原 = [00000001]反

[-1] = [10000001]原 = [11111110]反

可见如果一个反码表示的是负数, 人脑无法直观的看出来它的数值. 通常要将其转换成原码再计算.

  1. 补码

补码的表示方法是:

正数的补码就是其本身

负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)

[+1] = [00000001]原 = [00000001]反 = [00000001]补

[-1] = [10000001]原 = [11111110]反 = [11111111]补

对于负数, 补码表示方式也是人脑无法直观看出其数值的. 通常也需要转换成原码在计算其数值.

负数的按位与运算:
按位与运算是按照数据的内部二进制形式进行运算的。若是两个负数,则是按二进制补码形式进行按位与。所得结果若用有符号整型变量存储,则内部形式仍看作二进制补码。如果用格式符%d输出,输出结果为十进制真值(不应该称为十进制原码)。
例如:

#include 
main()
{short int a=-2,b=-3,c;
 a=-2;//a的补码1111 1111 1111 1110
 b=-3;//b的补码1111 1111 1111 1101
 c=a&b;//c的补码1111 1111 1111 1100
 printf("%hd\n",c);//c的真值-4
}

你可能感兴趣的:(*数据之心)