算法(二)(计算array中的inversion数字)

1.divide and conqer

(1) divide into smaller subproblems

(2) conquer via recursive calls

(3)combine solution of subproblems into one for the original problem。

example: (1,3,5,2,4,6)

inversion: (3,2), (5,2), (5,4)

2. 计算array中的inversion数字

2.1 Brute--force:Quardric 时间

2.2 数列 A,  n 长度

call an inversion(i < j) :

(1) left: if i,j <= n / 2;

right : if i ,j > n / 2;

split: if i <= n/2 < j

pseudocode:

if n = 1  return  0

else

       x = count(lst half of A, n/2)

        y = count(2en half of A ,n/2)

        z = count Split Inv (A,n)

return x + y + z

3.master method

If : 

     T(n) <= aT(n/b) + O(n^d);

其中: a:是递归调用的次数(>=1),b:初始值的因子。d:.。

The Master Method:

T(n) = O((n^d)logn)  , if a = b^d(case1)

T(n) = O(n^d) ,           if a < b^d(case2)

T(n) = O(n^(logb(a))), if a > b^d(case3)


https://github.com/Shinered/inversions








你可能感兴趣的:(算法(二)(计算array中的inversion数字))