[Python] Basemap

参考:https://blog.csdn.net/sinat_18665801/article/details/82291067#1__15

 

附世界地图:

[Python] Basemap_第1张图片

 [Python] Basemap_第2张图片

# 该2行包括必要的basemap和matplotlib库------世界地图
from mpl_toolkits.basemap import Basemap    
import matplotlib.pyplot as plt

# plt.figure(figsize=(10,8))
# map = Basemap()
map=Basemap(
    llcrnrlon=77,
    llcrnrlat=14,
    urcrnrlon=140,
    urcrnrlat=51,
    projection='lcc',
    lat_1=33,
    lat_2=45,
    lon_0=100
)#中国地图
map.drawcoastlines()#海岸线
map.drawcountries(linewidth=1.5)#国界线
map.readshapefile('gadm36_CHN_shp/gadm36_CHN_1', 'states', drawbounds=True)
plt.show()
plt.savefig('momo.png')

 

美国地图及人口热力图

[Python] Basemap_第3张图片

from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from matplotlib import cm

# 绘制基础地图,选择绘制的区域,因为是绘制美国地图,故选取如下经纬度,lat_0和lon_0是地图中心的维度和经度

map = Basemap(projection='stere',lat_0=90,lon_0=-105,\
            llcrnrlat=23.41 ,urcrnrlat=45.44,\
            llcrnrlon=-118.67,urcrnrlon=-64.52,\
            rsphere=6371200.,resolution='l',area_thresh=10000)#美国地图
# map = Basemap(projection='stere', 
#               lat_0=0, lon_0=280,
#               llcrnrlon=73.33, 
#               llcrnrlat=3.51, 
#               urcrnrlon=112.16, 
#               urcrnrlat=53.123)
# map=Basemap(
#     llcrnrlon=77,
#     llcrnrlat=14,
#     urcrnrlon=140,
#     urcrnrlat=51,
#     projection='lcc',
#     lat_1=33,
#     lat_2=45,
#     lon_0=100
# )#中国地图

map.drawmapboundary()   # 绘制边界
#map.fillcontinents()   # 填充大陆,发现填充之后无法显示散点图,应该是被覆盖了
map.drawstates()        # 绘制州
map.drawcoastlines()    # 绘制海岸线
map.drawcountries()     # 绘制国家
# map.drawcounties()      # 绘制县

parallels = np.arange(0.,90,10.) 
map.drawparallels(parallels,labels=[1,0,0,0],fontsize=10) # 绘制纬线

meridians = np.arange(-110.,-60.,10.)
map.drawmeridians(meridians,labels=[0,0,0,1],fontsize=10) # 绘制经线


posi=pd.read_csv("C:\\Users\\Downloads\\datasets-master\\2014_us_cities.csv") # 读取数据

## 原始数据有3228组数据,我只选择了180个城市的数据
lat = np.array(posi["lat"][1:1100])                        # 获取维度之维度值
lon = np.array(posi["lon"][1:1100])                        # 获取经度值
pop = np.array(posi["pop"][1:1100],dtype=float)    # 获取人口数,转化为numpy浮点型

size=(pop/np.max(pop))*1000     # 绘制散点图时图形的大小,如果之前pop不转换为浮点型会没有大小不一的效果
x,y = map(lon,lat)

# plt.text(x, y, 'Lagos',fontsize=12,fontweight='bold',
#                     ha='left',va='bottom',color='k')
# 
# 
# x, y = map(lon[0], lat[0])
# 
# plt.text(x, y, 'Barcelona',fontsize=12,fontweight='bold',
#                     ha='left',va='center',color='k',
#                     bbox=dict(facecolor='b', alpha=0.2))
#                     

# plt.scatter(x,y,s=size,cmap=cm.hsv,edgecolors=None,facecolors='c')

# plt.scatter(x,y,s=size,cmap=cm.hsv) # 使用matplotlib的散点图绘制函数

map.scatter(x,y,s=size)     # 也可以使用Basemap的methord本身的scatter
plt.title('Population distribution in America')
plt.show()

数据下载地址:https://github.com/plotly/datasets/blob/master/2014_us_cities.csv 

你可能感兴趣的:(python)