各种滤波原理

1.维纳滤波

维纳滤波是一种平稳随机过程的最佳滤波理论,换句话说就是在滤波过程中系统的状态参数(或信号的波形参数)是稳定不变的。它将所有时刻的采样数据用来计算互相关矩阵,涉及到解维纳-霍夫方程。可以说维纳滤波仅在理论上有意义,在实际应用中的局限性表现在:不适用于非平稳的随机过程的滤波;要用到所有时刻的采样数据,需要的数据存储容量大;解维纳-霍夫方程是要用到矩阵的求逆运算,计算量大(因为互相关矩阵的阶数很大),而且实际数据下的维纳-霍夫方程可能无解。


2.卡尔曼滤波

卡尔曼滤波不仅适用于平稳随机过程,也适用于非平稳随机过程。它将系统的状态迁移用状态方程来表述,并用固定维数的矩阵运算递推式代替了维纳滤波的解维数巨大的线性方程组,克服了维纳滤波的一系列局限性,获得了成功应用,被称为上个世纪四十年代统计信号处理的最大成果。在应用中,Kalman滤波的关键是建立准确的系统模型(包括状态方程和观测方程)。kalman filter考虑了系统噪声和测量噪声,最小二乘一般没有考虑系统噪声,如果kalman filter不考虑系统噪声,就相当于递归加权最小二乘,如果二者皆不考虑就是最简单的最小二乘。


3.匹配滤波

匹配滤波跟前面的两个滤波理论不一样,它不属于波形估计(或称系统的状态估计),而是属于信号的统计检测这个范畴,这一点一定要记住!匹配滤波不同于一般的滤波方法,其目的不是为了最好地恢复信号波形,而是使得在某一判决时刻T时,使得输出的信噪比最大,从而有效的检测到信号(或发现信号)。已知信号是指数衰减信号s(t),

它淹没在到达的信号r(t)所含的噪声q(t)中,经采样后表示为r(n)=s(n)+q(n)

使用匹配滤波器h(t)=s(T-t)作卷积,就得到输出的最佳估计。

由卷积运算的过程看,在信号幅度最大的地方,卷积加权最多,而在噪声占主要的地方,卷积的结果削弱了噪声的作用。
可以看出来,匹配滤波器可以看作是自相关运算,也可以看作是一个自相关运算。从输出的角度来看,匹配滤波与信号自相关的不同点在于:自相关检测是随时与被检测的信号自身进行相关,不需要任何先验知识;而匹配滤波是将到达的信号与预先设定的冲激响应相卷积,可以预先设置各种冲激响应,分别与到达的信号进行卷积,如果二者“匹配”了,就得到最大输出。
可以证明,对于白噪声匹配滤波器,使输出信噪比达到最大时滤波器的传递函数为

式中,S*(Ω)是信号s(t)的傅立叶变换S(Ω)的复共轭,c是任一常数,反映线性匹配滤波器的放大量,通常取c=1。为实现h(t)和x(t)的高速卷积,可由频率的方法实现.为了提高运算速度,通常不必计算FFT2,而是预先算好的H(k)存放在只读存储器中,需时只需从存储器中取出来与X(k) 相乘即可。

 

4.小波滤波

维纳滤波和卡尔曼滤波属于一类时域滤波器,小波滤波则与常见的带通滤波器(包括低通滤波、带通滤波、带限滤波、高通滤波)属于频域滤波器,其特点是将信号与噪声在频率进行分离,抑制有用信号频带以外的噪声,使有用信号通过,但不能抑制与有用信号占据相同频带的噪声(这一点与维纳滤波和卡尔曼滤波是从根本上不同的)。与基于傅立叶变换的常规滤波方法相比,小波变换适用于时变信号的频谱分析,能够显示信号频率随时间变化的特性(傅立叶变换认为在信号的处理时间内频率特性是不变的)。但是,在实际应用中,由于小波变换计算量很大,实时处理受到限制。而且由于实际时变信号的频率特性非常复杂,还没有形成统一的小波滤波理论。

第1种方法:限幅滤波法(又称程序判断滤波法)
  A方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A),每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效,如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值。
  B优点: 能有效克服因偶然因素引起的脉冲干扰。
  C缺点: 无法抑制那种周期性的干扰,平滑度差。
第2种方法:中位值滤波法
  A方法: 连续采样N次(N取奇数),把N次采样值按大小排列,取中间值为本次有效值。
  B优点: 能有效克服因偶然因素引起的波动干扰,对温度、液位的变化缓慢的被测参数有良好的滤波效果。
  C缺点: 对流量、速度等快速变化的参数不宜。
第3种方法:算术平均滤波法
  A方法: 连续取N个采样值进行算术平均运算,N值较大时:信号平滑度较高,但灵敏度较低;N值较小时:信号平滑度较低,但灵敏度较高。N值的选取:一般流量,N=12;压力:N=4。
  B优点: 适用于对一般具有随机干扰的信号进行滤波,这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动。
  C缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用,比较浪费RAM 。
第4种方法:递推平均滤波法(又称滑动平均滤波法)
  A方法: 把连续取N个采样值看成一个队列,队列的长度固定为N,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据(先进先出原则) 。把队列中的N个数据进行算术平均运算,就可获得新的滤波结果。N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4。
  B优点: 对周期性干扰有良好的抑制作用,平滑度高,适用于高频振荡的系统。
  C缺点: 灵敏度低,对偶然出现的脉冲性干扰的抑制作用较差,不易消除由于脉冲干扰所引起的采样值偏差,不适用于脉冲干扰比较严重的场合,比较浪费RAM。
第5种方法:中位值平均滤波法(又称防脉冲干扰平均滤波法)
  A方法: 相当于“中位值滤波法”+“算术平均滤波法”,连续采样N个数据,去掉一个最大值和一个最小值,然后计算N-2个数据的算术平均值。N值的选取:3~14。
  B优点: 融合了两种滤波法的优点,对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。
  C缺点: 测量速度较慢,和算术平均滤波法一样,比较浪费RAM。
第6种方法:限幅平均滤波法
  A方法: 相当于“限幅滤波法”+“递推平均滤波法”,每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理。
  B优点: 融合了两种滤波法的优点,对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。
  C缺点: 比较浪费RAM 。
第7种方法:一阶滞后滤波法
  A方法: 取a=0~1,本次滤波结果=(1-a)*本次采样值+a*上次滤波结果。
  B优点: 对周期性干扰具有良好的抑制作用,适用于波动频率较高的场合。
  C缺点:相位滞后,灵敏度低,滞后程度取决于a值大小,不能消除滤波频率高于采样频率的1/2的干扰信号。
第8种方法:加权递推平均滤波法
  A方法: 是对递推平均滤波法的改进,即不同时刻的数据加以不同的权,通常是,越接近现时刻的资料,权取得越大,给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低。
  B优点: 适用于有较大纯滞后时间常数的对象和采样周期较短的系统。
  C缺点: 对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号,不能迅速反应系统当前所受干扰的严重程度,滤波效果差。
第9种方法:消抖滤波法
  A方法: 设置一个滤波计数器,将每次采样值与当前有效值比较: 如果采样值=当前有效值,则计数器清零。如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出),如果计数器溢出,则将本次值替换当前有效值,并清计数器。
  B优点: 对于变化缓慢的被测参数有较好的滤波效果,可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动。
  C缺点: 对于快速变化的参数不宜,如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统。
第10种方法:限幅消抖滤波法
  A方法: 相当于“限幅滤波法”+“消抖滤波法”,先限幅后消抖。
  B优点: 继承了“限幅”和“消抖”的优点,改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统。
  C缺点: 对于快速变化的参数不宜。
第11种方法:IIR 数字滤波器
  A方法: 确定信号带宽, 滤之。 Y(n) = a1*Y(n-1) + a2*Y(n-2) + ... + ak*Y(n-k) + b0*X(n) + b1*X(n-1) + b2*X(n-2) + ... + bk*X(n-k)。
  B优点: 高通,低通,带通,带阻任意。设计简单(用matlab)。
  C缺点: 运算量大。
 
部分程序:
1、限副滤波
#define A 10
char value;
char filter()
{
char new_value;
new_value = get_ad();
if ( ( new_value - value > A ) || ( value - new_value > A )
return value;
return new_value;
}
2、中位值滤波法
#define N 11
char filter()
{
char value_buf[N];
char count,i,j,temp;
for ( count=0;count
{
   value_buf[count] = get_ad();
   delay();
}
for (j=0;j
{
   for (i=0;i
   {
    if ( value_buf>value_buf[i+1] )
    {
     temp = value_buf;
     value_buf = value_buf[i+1]; 
     value_buf[i+1] = temp;
    }
   }
}
return value_buf[(N-1)/2];
}
3、算术平均滤波法
#define N 12
char filter()
{
int sum = 0;
for ( count=0;count
{
   sum + = get_ad();
   delay();
}
return (char)(sum/N);
}
4、递推平均滤波法(又称滑动平均滤波法)
#define N 12 
char value_buf[N];
char i=0;
char filter()
{
char count;
int sum=0;
value_buf[i++] = get_ad();
if ( i == N ) i = 0;
for ( count=0;count
sum = value_buf[count];
return (char)(sum/N);
}
5、中位值平均滤波法(又称防脉冲干扰平均滤波法)
#define N 12
char filter()
{
char count,i,j;
char value_buf[N];
int sum=0;
for (count=0;count
{
   value_buf[count] = get_ad();
   delay();
}
for (j=0;j
{
   for (i=0;i
   {
    if ( value_buf>value_buf[i+1] )
    {
     temp = value_buf;
     value_buf = value_buf[i+1]; 
     value_buf[i+1] = temp;
    }
   }
}
for(count=1;count
sum += value[count];
return (char)(sum/(N-2));
}
6、限幅平均滤波法
 
略 参考子程序1、3

7、一阶滞后滤波法
#define a 50
char value;
char filter()
{
char new_value;
new_value = get_ad();
return (100-a)*value + a*new_value; 
}

8、加权递推平均滤波法
#define N 12
char code coe[N] = {1,2,3,4,5,6,7,8,9,10,11,12};
char code sum_coe = 1+2+3+4+5+6+7+8+9+10+11+12;
char filter()
{
char count;
char value_buf[N];
int sum=0;
for (count=0,count
{
   value_buf[count] = get_ad();
   delay();
}
for (count=0,count
sum += value_buf[count]*coe[count];
return (char)(sum/sum_coe);
}

9、消抖滤波法
#define N 12
char filter()
{
char count=0;
char new_value;
new_value = get_ad();
while (value !=new_value);
{
   count++;
   if (count>=N) return new_value;
   delay();
   new_value = get_ad();
}
return value; 
}
10、限幅消抖滤波法
略 参考子程序1、9

 

你可能感兴趣的:(无线通信)