PAT 乙级 1001 害死人不偿命的(3n+1)猜想

1001 害死人不偿命的(3n+1)猜想 (15 分)

卡拉兹(Callatz)猜想:

对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?

输入格式:

#include 

int main(){
	int num;
	int i = 0;

	//printf("害死人不偿命的(3n+1)猜想\n");
	//printf("请输入一个自然数:");
	scanf("%d",&num);
	while(num != 1){
		i++;
		if(num % 2 == 0){
			num = num / 2;
		}else{
			num = 3 * num + 1;
			num = num / 2;
		}

	}
	printf("%d\n",i);
	return 0;
}

每个测试输入包含 1 个测试用例,即给出正整数 n 的值。

输出格式:

输出从 n 计算到 1 需要的步数。

输入样例:

3

输出样例:

5

 

你可能感兴趣的:(PAT,PAT)