题目:
ACM (ACMers' Chatting Messenger) is a famous instant messaging software developed by Marjar Technology Company. To attract more users, Edward, the boss of Marjar Company, has recently added a new feature to the software. The new feature can be described as follows:
If two users, A and B, have been sending messages to each other on the last m consecutive days, the "friendship point" between them will be increased by 1 point.
More formally, if user A sent messages to user B on each day between the (i - m + 1)-th day and the i-th day (both inclusive), and user B also sent messages to user A on each day between the (i - m + 1)-th day and the i-th day (also both inclusive), the "friendship point" between A and B will be increased by 1 at the end of the i-th day.
Given the chatting logs of two users A and B during n consecutive days, what's the number of the friendship points between them at the end of the n-th day (given that the initial friendship point between them is 0)?
There are multiple test cases. The first line of input contains an integer T (1 ≤ T ≤ 10), indicating the number of test cases. For each test case:
The first line contains 4 integers n (1 ≤ n ≤ 109), m (1 ≤ m ≤ n), x and y (1 ≤ x, y ≤ 100). The meanings of n and m are described above, while x indicates the number of chatting logs about the messages sent by A to B, and y indicates the number of chatting logs about the messages sent by B to A.
For the following x lines, the i-th line contains 2 integers la, i and ra, i (1 ≤ la, i ≤ ra, i ≤ n), indicating that A sent messages to B on each day between the la, i-th day and the ra, i-th day (both inclusive).
For the following y lines, the i-th line contains 2 integers lb, i and rb, i (1 ≤ lb, i ≤ rb, i ≤ n), indicating that B sent messages to A on each day between the lb, i-th day and the rb, i-th day (both inclusive).
It is guaranteed that for all 1 ≤ i < x, ra, i + 1 < la, i + 1 and for all 1 ≤ i < y, rb, i + 1 < lb, i + 1.
For each test case, output one line containing one integer, indicating the number of friendship points between A and B at the end of the n-th day.
5 3 1 1 1 2 4 5
3 0
For the first test case, user A and user B send messages to each other on the 1st, 2nd, 3rd, 5th, 6th, 7th, 8th and 10th day. As m = 3, the friendship points between them will be increased by 1 at the end of the 3rd, 7th and 8th day. So the answer is 3.
思路分析:一开始想把所有的天数用数组下标表达出来,然后再在上面做标记,后来发现纳尼!!!!!n的范围10e9???逗我?这个怎么用下标表示???我真傻,真的(2333)其实这就是一个求交集的问题,把区间表示出来就好,无需表示坐标这么麻烦代码:
#include
#include
#include
#include
#define MAX 100+10
typedef long long LL;
struct cbc
{
LL l,r;
}AtoB[MAX],BtoA[MAX];
LL max(LL a,LL b)
{
return a>b ? a:b;
}
LL min (LL a,LL b)
{
return ar || r-l+1