bzoj 2118: 墨墨的等式(同余最短路)

题目大意:墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,

给定N、{an}、以及B的取值范围,求出有多少B可以使等式存在非负整数解。

这种题的主要思路就是,找到所有a_{i}的最小值x,而满足条件的所有取值mod x就在0~x-1之间,那么找到最小的满足这个余数的值

之后只要不断加上自己就都是合法的解,可以直接求和,那么这个最小值怎么找呢?

只要利用最短路算法就可以轻松的求出了,记得新的值要取模哦,下标不要弄错了。

#include
#include
#include
#include
#include
using namespace std;
typedef long long ll;
int n;ll l,r;
ll dis[500005],val[500005];
bool used[500005];
ll maxv=0x3f3f3f3f3f3f3f3fll;
void spfa()
{
    memset(dis,0x3f,sizeof(dis));
    dis[0]=0;
    queueM;
    M.push(0);
    used[0]=1;
    while(!M.empty())
    {
        int u=M.front();
        M.pop();
        for(int i=1;i<=n;i++)
        {
            int y=(u+val[i])%maxv;
            if(dis[y]>dis[u]+val[i])
            {
                dis[y]=dis[u]+val[i];
                if(!used[y])
                {
                    used[y]=1;
                    M.push(y);
                }
            }
        }
        used[u]=0;
    }
}
ll query(ll x)
{
    ll ans=0;
    for(int i=0;i

 

你可能感兴趣的:(同余最短路)