利用递归实现不定重数多重循环(附源代码)

利用递归实现不定重数多重循环(附源代码)

  很多情况下我们要实现的程序本身并不复杂但却很烦琐,这里举一个穷举的例子。多数穷举程序需要遍历多个循环点,我们遇到的情况经常是:变量a的变化范围是aMin~aMax,在a的每个取值上b又要从bMin~bMax全都遍历一遍……如果是只有a,b两个变量那实现起来当然方便,只需如下代码即可:

for(a = aMin; a < aMax; a += da)

{

  for(b = bMin; b < bMax; b += db)

  {

    // do some thing

    ...

  }

}

  但是如果循环点比较多,甚至是一个数组呢?你会说这好办,只要:

for(a = aMin; a < aMax; a += da)

{

  for(b = bMin; b < bMax; b += db)

  {

    for(c = cMin; c < cMax; c += dc)

    {

      for(d = dMin; d < bMax; d += dd)

      {

        for(e = eMin; e < eMax; e += de)

        {

          for(f = fMin; f < fMax; f += df)

          {

            ...

          }

        }

      }

    }

  }

}

  ……也许可行吧……

  不过,这篇文章要向大家推荐一种更为方便的方法——递归。

  递归,说白了就是自己调用自己的函数。利用递归这种特殊的机制,我们可以把上面大量重复的代码化繁为简。具体实现方法可以参考以下模型:

bool Recursion(int index, int min, int max)

{

  for(int i = min; i <= max; i++)

  {

    if(index == 0)

    {

      // 在这里添加搜索代码,如果要中途终止搜索,则返回true

      ...

      return true or false;

    }

    else

    {

      if(Recursion(index - 1, min, max))

      {

        // 收到搜索终止信号,直接跳出

        return true;

      }

    }

  }

  return true;

}

  这里index表示调用的层数,可以用来在一开始调用这个函数时控制多重循环的重数,min和max是每重循环的搜索范围,可以根据实际需要写出每重循环的搜索范围都不同的多重循环。

  当然这个只是最一般的模型,可以根据实际问题的需要进行变化。例如,如果min和max不会变化,可以在程序中写死;index也可以从0开始到特定值时结束。

  下面举一个实际的例子:

  以下这段代码实现了在城市数目较少的情况下,利用穷举法解决旅行商问题(tsp)(城市数目较多的情况可以参考我的另一篇文章《用遗传算法解决旅行商问题(附源代码)》)。这个程序在我的笔记本上运行11个或以下城市的tsp用时小于1秒,12个城市的tsp需要5~7秒,还是可以接受的。城市再多,已经没有什么实际意义,顶多还可以作为教学试验。不过城市数量较少的情况下穷举法也是一种非常具有竞争力的算法,至少它求出来的是确切全局最优解。

#include

#include

#include

#include

#include

#define MAX_NUM    20

double s_citys[MAX_NUM][2];

double s_distances[MAX_NUM][MAX_NUM];

int s_num = 0;

double s_min = 1e200;

int s_indexMin[MAX_NUM];

int s_index[MAX_NUM];

bool s_mark[MAX_NUM];

bool ReadFile()

{

  FILE * fp = fopen("citys.txt", "r");

  if(fp)

  {

    s_num = 0;

    while(!feof(fp) && s_num < MAX_NUM)

    {

      fscanf(fp, "%lf, %lf/n", &s_citys[s_num][0], &s_citys[s_num][1]);

      s_num++;

    }

    fclose(fp);

    return true;

  }

  return false;

}

void Search(int index)

{

  int i, j;

  double sum;

  for(i = 1; i < s_num; i++)

  {

    if(s_mark[i])

    {

      s_index[index] = i;

      s_mark[i] = false;

      if(index == s_num - 1)

      {

        sum = 0.0;

        for(j = 0;j < s_num - 1; j++)

        {

          sum += s_distances[s_index[j]][s_index[j + 1]];

        }

        sum += s_distances[s_index[s_num - 1]][s_index[0]];

        if(sum < s_min)

        {

          memcpy(s_indexMin, s_index, sizeof(s_index));

          s_min = sum;

        }

      }

      else

      {

        Search(index + 1);

      }

      s_mark[i] = true;

    }

  }

}

void WriteFile()

{

  FILE * fp = fopen("result.txt", "w");

  if(fp)

  {

    for(int i = 0; i < s_num; i++)

    {

      fprintf(fp, "%d/n", s_indexMin[i]);

    }

    fclose(fp);

  }

}

void main()

{

  int i, j;

  if(ReadFile())

  {

    time_t start, end;

    double timeUsed;

    time(&start);

    printf("开始穷举,请等待...");

    for(i = 1; i < s_num; i++)

    {

      for(j = 0; j < i; j++)

      {

        s_distances[i][j] =

          sqrt(

          (s_citys[i][0] - s_citys[j][0]) * (s_citys[i][0] - s_citys[j][0]) +

          (s_citys[i][1] - s_citys[j][1]) * (s_citys[i][1] - s_citys[j][1]));

        s_distances[j][i] = s_distances[i][j];

      }

    }

    s_min = 1e200;

    s_index[0] = 0;

    memset(s_mark, true, sizeof(s_mark));

    s_mark[0] = false;

    Search(1);

    time(&end);

    timeUsed = difftime(end, start);

    if(timeUsed < 1.0)

    {

      printf("/n用时小于1秒!/n");

    }

    else

    {

      printf("/n用时%.0lf秒!/n", timeUsed);

    }

    printf("/n最短行程%lf/n", s_min);

    printf("最佳访问序列:/n");

    for(int i = 0; i < s_num; i++)

    {

      printf("%02d/n", s_indexMin[i]);

    }

    WriteFile();

    printf("按任意键继续...");

    getch();

  }

  else

  {

    printf("读取文件失败");

  }

}

  程序的输入是一个名为citys.txt的文本文件,里面记录了城市的坐标(一般默认坐标的范围为(0.0,0.0)~(1.0,1.0))。输出是一个名为result.txt的文本文件,里面记录了最佳旅行路线所经过的城市序号顺序(城市序号为0~n-1,n为城市数目)。下面是这两个文件的一个样例:

citys.txt

0.930000, 0.620000

0.590000, 0.870000

0.430000, 0.440000

0.560000, 0.480000

0.050000, 0.300000

0.740000, 0.860000

0.130000, 0.210000

0.070000, 0.380000

0.690000, 0.120000

0.970000, 0.430000

0.850000, 0.730000

0.800000, 0.360000

result.txt

0

9

11

8

6

4

7

2

3

1

5

10

你可能感兴趣的:(利用递归实现不定重数多重循环(附源代码))