HDU 6031 Innumerable Ancestors【LCA】

题目链接

题意:n个点形成的一棵树,根节点为1,给两个点的集合A和B,从A和B中各取出一点,要求这两个点的LCA最大(深),输出最大深度。

先求一遍LCA,因为两个点的LCA不可能比这两个点都要深,所以按深度从大到小排序,剪枝:如果当前的最大深度比比较到的点要深则直接退出。

倍增LCA

#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;
const int maxn = 100000 + 10;

int e;
int n;
int deep[maxn];
int p[maxn][20];
int head[maxn];
int num1[maxn];
int num2[maxn];

struct Edge
{
    int v, next;
} edge[maxn * 2];

void addedge(int x, int y)
{
    edge[e].v = y;
    edge[e].next = head[x];
    head[x] = e ++;
}

void Init()
{
    memset(head, -1, sizeof(head));
    memset(p, -1, sizeof(p));
    e = 0;
}

void init()
{
    int i, j;
    //p[i][j]表示i结点的第2^j祖先
    for (j = 1; (1 << j) <= n; j++)
        for (i = 1; i <= n; i++)
            if (p[i][j - 1] != -1)
                p[i][j] = p[p[i][j - 1]][j - 1]; //i的第2^j祖先就是i的第2^(j-1)祖先的第2^(j-1)祖先
}

int lca(int a, int b) 
{
    int i, j;
    if (deep[a] < deep[b])  swap(a, b);
    for ( i = 0; (1 << i) <= deep[a]; i++ );
    i--;
    for ( j = i; j >= 0; j-- ) 
    {
        if (deep[a] - (1 << j) >= deep[b]) 
        {
            a = p[a][j];
        }
    }
    if (a == b) return a;
    for (j = i; j >= 0; j--) 
    {
        if (p[a][j] != -1 && p[a][j] != p[b][j]) 
        {
            a = p[a][j];
            b = p[b][j];
        }
    }
    return p[a][0];
}

void dfs(int u, int fa, int d)
{
    deep[u] = d;
    for (int i = head[u]; i != -1; i = edge[i].next)
    {
        int to = edge[i].v;
        if (fa != to)
        {
            p[to][0] = u; //p[x][0]保存x的父节点为u;
            dfs(to, u, d + 1);
        }
    }
}

bool cmp(int x, int y)
{
    return deep[x] > deep[y];
}

int main()
{
    int m;
    while (~scanf("%d %d", &n , &m))
    {
        int a, b;
        Init();
        for (int i = 0;  i < n - 1; i ++)
        {
            scanf("%d%d", &a, &b);
            addedge(a, b);
            addedge(b, a);
        }
        deep[1] = 1;
        dfs(1, 1, 1);
        init();
        int k1, k2;
        while (m --)
        {
            int max1 = 0;
            scanf("%d", &k1);
            for (int i = 0; i < k1; i ++)   scanf("%d", &num1[i]);
            scanf("%d", &k2);
            for (int i = 0; i < k2; i ++)   scanf("%d", &num2[i]);
            sort(num1, num1 + k1, cmp);
            sort(num2, num2 + k2, cmp);
            for (int i = 0 ; i < k1; i ++)
            {
                if (max1 >= deep[num1[i]])  break;
                for (int j = 0; j < k2; j ++)
                    max1 = max(max1, deep[lca(num1[i], num2[j])]);
            }
            printf("%d\n", max1);

        }
    }
    return 0;
}


你可能感兴趣的:(ACM)