冒泡水 矩阵快速幂和矩阵等比数列求和

一道十分傻(jing)B(dian)的题目:
给定一有向图,边长均为 1 1 ,求长度小于 k k 的环个数 modm mod m 。(点数小于等于 100 100 )。
倒是写了个很全的模板……
典型的水题…(矩阵套矩阵,分治两种做法都可以……后者常数非常小)
贴一个分治的代码(注意在分治的时候顺便处理出 Ak A k ):

# include 
# include 
# include 

int MOD ;

# define RG register
# define N 101

class Matrix  {
    private :
        int arr [N] [N] ;
    public :
        Matrix ( )  {   memset ( arr, 0, sizeof arr ) ;  }
        inline void set ( )  {  for ( int i = 0 ; i < N ; ++ i )  arr [i] [i] = 1 ; }
        inline int* operator [] ( const int& u )  { return arr [u] ;  }
        inline Matrix operator * ( Matrix& ano )  const  {
            Matrix rt ;
            for ( RG int k = 1 ; k < N ; ++ k )
                for ( RG int i = 1 ; i < N ; ++ i )
                    if ( arr [i] [k] )  {
                        for ( RG int j = 1 ; j < N ; ++ j )
                            if ( ano [k] [j] )  {
                                rt [i] [j] += 1LL * arr [i] [k] * ano [k] [j] % MOD ;
                                if ( rt [i] [j] >= MOD )  rt [i] [j] -= MOD ;
                            }
                    }
            return rt ;
        }
        inline void operator *= ( Matrix& ano )  {
            Matrix rt ;
            for ( RG int k = 1 ; k < N ; ++ k )
                for ( RG int i = 1 ; i < N ; ++ i )
                    if ( arr [i] [k] )  {
                        for ( RG int j = 1 ; j < N ; ++ j )
                            if ( ano [k] [j] )  {
                                rt [i] [j] += 1LL * arr [i] [k] * ano [k] [j] % MOD ;
                                if ( rt [i] [j] >= MOD )  rt [i] [j] -= MOD ;
                            }
                    }
            *this = rt ;
        }
        inline Matrix operator + ( Matrix& ano )  const  {
            Matrix rt ( *this ) ;
            for ( RG int i = 0 ; i < N ; ++ i )
                for ( RG int j = 0 ; j < N ; ++ j )  {
                    rt [i] [j] += ano [i] [j] ;
                    if ( rt [i] [j] >= MOD )  rt [i] [j] -= MOD ;
                }
            return rt ;
        }
        inline void operator += ( Matrix& ano )  {
            for ( RG int i = 0 ; i < N ; ++ i )
                for ( RG int j = 0 ; j < N ; ++ j )  {
                    arr [i] [j] += ano [i] [j] ;
                    if ( arr [i] [j] >= MOD )  arr [i] [j] -= MOD ;
                }
        }
        inline Matrix operator ^ ( int x )  const  {
            Matrix rt, a ( *this ) ;
            rt.set ( ) ;
            for ( ; x ; a *= a, x >>= 1 )
                if ( x & 1 )  {
                    rt *= a ;
                }
            return rt ;
        }
} ;

Matrix A, B ;

inline Matrix S ( int n )  {
    if ( n == 1 )  return B = A ;
    Matrix rt, tmp ;
    rt.set ( ) ;
    tmp = S ( n >> 1 ) ;
    rt += B ; // (base + A^ (n/2) ) * S ( n >> 1 )
    rt *= tmp ; // B = A ^ ( n / 2 )
    B *= B ;
    if ( n & 1 )  {
        B *= A ;
        return rt + B ;
    }
    return rt ;
}

int main ( )  {

    freopen ( "tour.in", "r", stdin ) ;
    freopen ( "tour.out", "w", stdout ) ;

    int n ;
    scanf ( "%d", & n ) ;
    for ( RG int i = 1 ; i <= n ; ++ i )
        for ( RG int j = 1 ; j <= n ; ++ j )  {
            static int c ;
            while ( isspace ( c = getchar ( ) ) ) ;
            if ( c == 'Y' )  A [i] [j] = 1 ;
        }
    int k, m ;
    scanf ( "%d%d", & k, & m ) ;

    MOD = m ;
    Matrix rt = S ( k - 1 ) ;

    long long ans ( 0 ) ;

    for ( int i = 1 ; i <= n ; ++ i )  ans += rt [i] [i] ;

    return ! printf ( "%d\n", ( int ) ( ans % m ) ) ;
}

你可能感兴趣的:(矩阵快速幂,分治,图论)