DirectKafkaInputDStream 只在 driver 端接收数据,所以继承了 InputDStream,是没有 receivers 的
在结合 Spark Streaming 及 Kafka 的实时应用中,我们通常使用以下两个 API 来获取最初的 DStream(这里不关心这两个 API 的重载):
KafkaUtils#createDirectStream
及
KafkaUtils#createStream
这两个 API 除了要传入的参数不同外,接收 kafka 数据的节点、拉取数据的时机也完全不同。本文将分别就两者进行详细分析。
先来分析 createStream
,在该函数中,会新建一个 KafkaInputDStream
对象,KafkaInputDStream
继承于 ReceiverInputDStream
。我们在文章揭开Spark Streaming神秘面纱② - ReceiverTracker 与数据导入分析过
KafkaInputDStream当然也实现了getReceiver方法,如下:
def getReceiver(): Receiver[(K, V)] = {
if (!useReliableReceiver) {
//< 不启用 WAL
new KafkaReceiver[K, V, U, T](kafkaParams, topics, storageLevel)
} else {
//< 启用 WAL
new ReliableKafkaReceiver[K, V, U, T](kafkaParams, topics, storageLevel)
}
}
根据是否启用 WAL,receiver 分为 KafkaReceiver 和 ReliableKafkaReceiver。揭开Spark Streaming神秘面纱②-ReceiverTracker 与数据导入一文中详细地介绍了
以上两篇文章并没有具体介绍 receiver 是如何接收数据的,当然每个重载了 ReceiverInputDStream 的类的 receiver 接收数据方式都不相同。下图描述了 KafkaReceiver 接收数据的具体流程:
在揭开Spark Streaming神秘面纱③ - 动态生成 job中,介绍了在生成每个 batch 的过程中,会去取这个 batch 对应的 RDD,若未生成该 RDD,则会取该 RDD 对应的 blocks 数据来生成 RDD,最终会调用到DStream#compute(validTime: Time)
函数,在KafkaUtils#createDirectStream
调用中,会新建DirectKafkaInputDStream
,DirectKafkaInputDStream#compute(validTime: Time)
会从 kafka 拉取数据并生成 RDD,流程如下:
如上图所示,该函数主要做了以下三个事情:
进一步看 KafkaRDD 的 getPartitions 实现:
override def getPartitions: Array[Partition] = {
offsetRanges.zipWithIndex.map { case (o, i) =>
val (host, port) = leaders(TopicAndPartition(o.topic, o.partition))
new KafkaRDDPartition(i, o.topic, o.partition, o.fromOffset, o.untilOffset, host, port)
}.toArray
}
从上面的代码可以很明显看到,KafkaRDD 的 partition 数据与 Kafka topic 的某个 partition 的 o.fromOffset 至 o.untilOffset 数据是相对应的,也就是说 KafkaRDD 的 partition 与 Kafka partition 是一一对应的
通过以上分析,我们可以对这两种方式的区别做一个总结: